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Editor's Preface

The (Lagrangian) motion of a fluid particle was contrasted with the
(Eulerian) flow past a fixed point in space during this twenty-fourth summer
program in geophysical fluid dynamics at the Woods Hole Oceanographic Institu-
tion. Peter Rhines opened the lecture series with a discussion of the basic
principles for large scale flows in a rotating system and followed that with
examples of fluid flows in which particle motions play a particularly signifi-
cant role. He discussed the distribution of both chemical and physical tracers
in oceanographic flows.

Glenn Flierl presented highly idealized, but highly illuminating, examples
of flows as seen in the Lagrangian and Eulerian frames of reference and then
discussed the observed and calculated transports of properties by Gulf Stream
rings.

The application of statistical mechanics to GFD was the focus for the
lecture series by Rick Salmon, who showed how to derive a number of important

oceanographic results by methods that physicists have used in other contexts
for many years.

David Andrews ended the series with the development of a theory of wave-
mean flow interactions and the application of those concepts to the observed
stratospheric warming in the atmosphere.

Just one week before the beginning of the program, we learned that because
of illness, Francis Bretherton would be unable to attend the program as princi-
pal invited lecturer. We are especially grateful to Flierl, Salmon and Andrews
for coming to the rescue so effectively with the lectures reported in the
following pages.

The microsymposium on biological and chemical t.acers in the ocean
included twenty seminars on different aspects of tracer distributions and the
dynamics of mixing and stirring in the ocean.

Seminars on GFD topics are summarized in the abstracts by the staff and
visitors. The Fellows' reports reflect the broad range of topics in which
they attempted to formulate and solve a tractable problem.

Peter Rhines helped to organize a large part of the activity of the
summer. Dave Broutman, Rick Salmon and Mark Swenson, our three Scripps parti-
cipants, inspired the GFD softball team to its first winning season in 20
years. A photograph of the team is included in the volume to commemorate that
achievement,

Florence Mellor tended to our practical needs and kept the program func-
tioning smoothly and was assisted by Betty Hodge. A. L. Peirson and Dorothy
Berthel helped with the administrative and financial duties., We are all
indebted to them.

Support of the program by the Office of Naval Research, the National

Science Foundation and the Woods Hole Oceanographic Institution's Center for
Analysis of Marine Systems is gratefully acknowledged.

George Veronis
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I. BASIC DYNAMICS OF THE LARGE-SCALE GEOSTROPHIC CIRCULATION

Peter B. Rhines

INTRODUCT ION

Recent evidence indicates that the present circulation of the ocean is
best viewed as one of a wide ensemble of possible states. In the broadest
sense, the circulation of the ocean involves complex interactions with the
land masses (over geological time) and with the atmosphere over a wide range
of time scales. The interactions with the atmosphere are profound enough that
to model the ocean as isolated from the atmosphere is to severely limit the
model's ability to describe important processes, especially over the time
scales of climatic change. Some of these processes are shown in cartoon form
be low.
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In many respects, the oceans and atmosphere are similar dynamical
systems. Still, there are some great differences of which two are
particularly striking:

1) There are no lateral boundaries (above the mountain tops) in the
atmosphere. Accordingly, the atmosphere exhibits a zonal structure to a
greater degree than the oceans,

2) There are significant differences in the forcing of the two
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systems. The oceans are primarily forced from above, i.e. wind stress and
thermal forcing. (There are exceptions such as tides, boundary mixing,
and geothermal heating.) Since the oceans are stably stratified, this
makes it very difficult to ventilate the deep oceans. The atmosphere, by
contrast, is heated below from infrared radiation and heated internally by
condensation in tropical cumulus towers. This leads to a large convective
cell (in the average sense) 1n the tropics, which influences the circula-~
tion globally through its efficient transport of heat.

While important features of the oceans' circulation can be explored deter-
ministically (eg. tides, permanent wind-gyre circulation, deep thermocline
circulation), the response of the oceans is so rich in scales that much of the
structure can be more sensibly studied from a stochastic point of view. From
this perspective, one attempts to 'filter' the equations of motion for the
general circulation scale, say, and is left to parameterize in some statist-
ical way the influence of other (smaller) scales of motion. Were the Interest
in a different scale, the parameterization would be different. Nor is the
parameterization likely to be faithful to the physics in a wide range of
circumstances. Thus the 'filtered' equations of motion for the general
circulation scale are not at all obvious.

Of particular interest to oceanographers is the manner in which a passive
tracer (marked fluid) evolves in a fluid flow. In this context we would like
to expiore the mechanism of transport and dilution. Furthermore, the behavior
of passive tracers are useful as models of distortion, transport and cascade
of dynamical quantities. Especially interesting in this regard i1s potential
vorticity, which 1s conservative following fluid elements. For a review of
some of these ideas, see Moffatt, 1981.

Equations of Motion

For a derivation of the pertinent equations of motion see Pedlosky, 1979.

Mass conservation
9? + V. pu =o

where §= density and u = (u,v,w) = east, north, up velocity, and t = time.
x,y and z are east, north and up, and X,y and :z: are corresponding unit vectors.
Momentum conservation

|
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ot
where -!) = rotation rate, p = pressure,
g = geopotential, ¥ kinematic Viscosity.
-\ -1
trod the scalin -\ . ~ . -
Introduce the sc 8 g/at ~ T ; ’3/3‘.\, [ .)/32- | X 1w U

The horizontal components of (1) then have the size O(V/NT) | o(U/nL), o)
o(v), o, oww/a, »/RXH*) respectively.

At scales where L » 10 km, T » 1 day, U ~10 cm/s, we have
Ro = U/N1L £ 10-1 Rossby Number
E = v/AZ »/nn* <<  Ekman Number

Only the 0(1l) terms survive.
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This is called geostrophic balance.

N =1
Similarly, the vertical momentum equation reduces to 0= -f +~1 —|3‘
to lowest order. This is the hydrostatic balance. ~

U (1) implies

93% v THAAR) - (422) Ty + 5% Vp « oM )

where ‘ = Vku. This is the vorticity ejuation. For a homogeneous, inviscid
fluid 3’=7,‘v~= 0. Notice that this implies that lines of constant Jd +2n

coincide with material lines -- a dye arrow initially indicating 1+.§_13. -

does so forever.

Consider equation (2) in light of the scaling given above. The twisting
term @ ’VY*Vk creates nearly horizontal vorticity since each of V9 , Vp
are nearly vertical. For Ro €< 1, the largest horizontal terms are

@Ry = - *VpxVp .
= 1§t g~k ] +OU/gY)

Notice that this is consistent with the curl of the geostrophic equation,
which can be written

Jg} = -3)‘:‘fo
u=(uv), V= (B-'By\, $=2R0-2

(3)

Thus, the large-scale geostrophic and hydrostatic balances allow constant
density surfaces to lie tilted with respect to equipotential surfaces. In
fact, since horizontal pressure gradients and (until recently) velocities are
difficult to measure in the ocean, the dominant occupation of oceanographers
has been to measure y so as to infer u(z) to within an undetermined

constant.
z) NU
vy

for rapid rotation

1 -
sealing (3) $y. =O(Bf‘ (RT)

and homogeneous fluid.

In either case we have u, = 0 for small aspect ratio. Continuity then
implies that w,, = 0. This is the Taylor-Proudman approximation and is a
reflection of the rigidity imparted to the fluid by the Coriolis force.

Kelvin's Theorem with Rotation

Define P z & g_-:!f ('{' < unit vector tangent to C). (4)
<.
a d4.dr '-é A (de
dr - dear w5l <)

+
e M
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Take C to be a material surface. Then -A—tkéﬁ\ = A‘_‘.
Note: NV .d,% = 'i\'. A\‘A\" q

> &b = Sg ac
ot e AT
Recall:

$(% va2us)= ~Tp 4 FTE v

Take ‘J = 0. Substitution

df - & aleu) dr +§c-;~,\7? Ae

Using Stokes' Theorem
€ f‘—

T

A
where n = unit vector normal to A.
~

h

Take C to lie on a constant density surface =D VPgVP E g <)
4" é A
Sl -2 PR A - _p5d
At e 2%

where A = area enclosed by the projection of C onto a plane perpendicular
to 5L, wicth the sign convention that A is positive if {(JL-3dS >0

and conversely.

Note: (1) It is not obvious that viscosity is negligible for long. As the
contour distorts, gradients become sharp enough for viscosity to
become important. Thus, when the contour distorts to such an extent
that significant gradients exist on a length scale (quL)V“’
viscosity becomes important. See figure below.

S Z 5 = %length scale = (@ J:')./"
c -

(2) Although C is a material circuit, it is not necessarily true that 7
indicates a systematic (Lagrangian) motion of fluid particles or a
systematic Eulerian average rotation in a fixed spatial region ini-
tially coincident with C. In a later lecture, in fact, we will pre-
sent an example where the systematic motion of fluid particles is in

the opposite direction to the sense of circulation as defined by (4).

(3) Note that when C folds over causing its projection to intersect
itself, A may become negative.

REFERENCES
Moffatt, H.K. 1981. J.F.M.. 106,

Pedlosky. J. 1979. Geophy. Fluid Dynam., Springer Verlag, N. Y.
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I1. POTENTIAL VORTICITY AND THE CIRCULATION
Peter B. Rhines

Spherical Shell

since T is the sum of planetary and
relative vortex-tube strengths, Kelvin's theorem
implies that if north-south motion should occur,
large relative vorticity would result. If the time scale
of the north-south motion T is fast enough, the
'rigidity' constraint is broken by stretching and
bending of columns of fluid. This allows the
motion of the fluid to deviate from the zonal
free geostrophic contours.

We may rewrite Kelvin'’s theorem as

A A
a “th{% As =-2 5L Aa% where Z = vertical unit vector, =

-~ ”~
Thus, for a small disk of fluid, we have 'S;L 2 LD_\
—— ~ .
_2N dA \ -3

_é‘J«
& 42 T A&t
The thin domain and heavy stratification tend to confine the disk to constant

z; thus dA ~ mg) é)
A ——
=

1.

= 4 s A
re
Note: It only takes slight tilts of the disk to cause the 'other terms' to

become significant. Slopes that are observed in the density surfaces of
the ocean are of this order.

- ...Fv 4~ terms that describe verticle motion

al-

% L))

where

-

Potential Vorticity

The natural differential version of Kelvin's theorem replaces A by an
equivalent measure of 'height' or 'thickness' changes between marked constant
density surfaces (see Pedlosky, 1979).

ARECRANEEI

For a single homogeneous layer of depth h this becomes
) A
%‘C( jg + ‘g’) = ¢ wvhere f = 2L sin A . (1b)

A quasi-geostrophic version, Boussinesq, appropriate to meso-scale dynamics is

%t( 01\]/ + FY + (fo;':li \V&)l-) =0 (lc)-
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where \(/ = streamfunction «C pressure and

Boeoar, dibeR L e perped

D L= - wA
NY = "3/ P T W=

/

where we have assumed that the perturbation pressure is hydrostatic and have
invoked the 6 —plane and Boussinesq approximations. This formulation is not
appropriate for basin wide flows since the assumptions:

(1) N2 = N2(z) only,
(2) f4, = constant,
(3) Cartesian geometry,

are all inaccurate. Neither is it appropriate for flows with length scales
less than the first internal Rossby radius of deformation.

Boundary Conditions

A
(a) Vertical 'coast'. y. |2\' oD W‘bzo(free slip) at the boundary.
-~

Note: This says tnat density surfaces must be level at the coast. Therefore
it cannot cope with thermal sources at the boundary unless you explicitly
include internal Kelvin waves or diffusion layers. Thermal sources thus
act as a singular perturbation to the geostrophic equations. In a layer
of thickness ~ NH/f, Kelvin waves endeavor to level off the coastal
density field.

(b) Isothermal 1id. 9_5_ o = /"‘: —f.'&:q';/a = 0o at z = 0.

(c) Isothermal bottom. ‘
u.l‘: - o T 1“ at z = H (due to a linearfzation)

> 2Dy o AN Ly

= n —
N Dt p (\Lna\
(This is seen by using the density equation in the quasi-geostrophic context,

B )

4

where h = H + h' and H = constant.

Special Limits of Potential Vorticity, q, where D%/Dt in (la,b,c).
1) L))L.’ = N“‘/‘f, = Rossby radius of deformation

= %: '}‘/)a /P for ocean basin scale flows.

(11) Thin, homogeneous layer, /2 = constant and Ro ~Sk/u where
h=H+ Sh = ocean depth. In the layer,

¢~ GorRy) /A

s - v —




-~ ~
(or, 1‘-‘- */4\ for a layered fluid, where h = thickness of constant
density layer.) 1f we imagine the large scale ocean circulation
to be steady, these simple large scale limits =D

Sé‘:7(479g‘\ =0, v -{?O =0

away from external mechanical or thermal forcing. This suggests that maps of
mean geostrophic contours q = constant on potential density surfaces will be
interesting.

More generally, we may consider a potential vorticity balance that is not
conservative.

D = F-
B4 - F-a
where F = external forcing and A = dissipation. Dividing this equation into
eddy and mean quantities we find

\ ! N ! - - T\
%% * \7‘5%‘ -V ug :_5"%\) "\:‘Vi; M TS
in the equation for the perturbations and
2 ,3.9y =-Jquw +F-B 20

where q = g + q' and u = _T1_+ u' and ( ) defines an appropriate averaging
procedure. Notice that, even in the absence of eddies, the mean flow has a
fundamentally nonlinear nature since the flow paths depend on the strength of
the flow. 1In energetic flows, where eddy activity can be large, (2c) describes
how the mean flow is driven across q contours by the eddy transport of poten-—
tial vorticity. Equation (2b) describes the eddy field. The terms on the

left hand side represent geostrophic turbulence. Furthermore, the q field pro-
vides a restoring background field for perturbations in terms on the right
hand side which represent Rossby wave restoring effects i;*_ <+ Qv% zo

or mean flow instabilities %t 4\_.!".(7{ +E-V&; =0

Note: F, A represent the effects of boundary forcing on q, P which are the
result of a complex series of feedbacks between the oceans and atmosphere.

As appropriate to the limits of large scale ocean circulation (see special
limits of q), q and @ are conserved on flow lines in the thermocline equa-
tions. These can be written as a single partial differential equation Iin a
variable M such that M, = pressure (Welander, 1971)

(Mg Ma) -
——-311-.3“'““ wt AMgMa,, =0

where k = latitude, ¢ = Jongitude,

W= - (2Lasi~N Mya
v = (ZQQS\-\)L—’s)T‘ y‘?t
W= (2l siar A) Mf
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? = ME'%.
M = S‘z’fe‘-e,- RIS BPLY N, S wo<¢
w

= w(g N o)

(=

Note: (1) linear 'density' diffusion adds the term

25t SiaX s h Mas,,

where %-{7/3': ﬁ”ae defines the diffusivity, &.

(2) A slow time dependence adds the term M,,. .

The density field (or the height field of constant potential vorticity
surfaces) is a streamfunction for dp W} where U, = horizontal velocity.
If the deep water were at rest, this would also be a streamfunction for u

itself.

But, more generally, the importance of w shows that important O(l) devia-
tion of u from 7.‘0p occurs in the subtropical gyres. This is the 'downhill'
flow in the subtropical gyre, where wind pumping is downward. The horseshoe
shapes of the g) surfaces (plotted on constant z) and the constant/surfaces
(similarly plotted) are displaced in such a fashion that there is a downward
component of flow everywhere in the gyre (except the western boundary layer.)
Figure 1 shows density, Op and streamfunction at three levels in a theoretical
wind-driven gyre of Rhines and Young, 1982. The driving effect, the Ekman
layer divergence, is antisymmetric about the mid-line, so only half of each
picture is shown. The circulation weakens and shifts poleward with depth.

Interpretation of the general circulation of the ocean by considering the
intersection of = ¢consl. surfaces and 0‘9 = ConsT surfaces yields the
following qualitative picture, see fig. 2.
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Fig. 1.

Streamlines

(left panels) and density contows for

a theoretical wind-driven gyre (Rhines and Young 1982) at three
levels beneath the sea surface.

the mid-line.

&

The patterns are symmetric about
Note the general similarity between flow lines and
density field yet the slight northward displacement of ¥ relative
to 26 insures that the flov p-oceeds “downhill’ everywhere in the
right half-basin as it musi Lo match the downward Ekman pumping.
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In the deep ocean, the flow is weak and f*:rfa, . This places a severe re-
striction on the types of flow possible. The circulation must be closed by
quite strohg processes such as a western boundary layer. The expressways are
indicative of the thermohaline circulation. The flow paths intersect the
ocean surface in high latitudes - this is the sea surface 'window' for entry
of buoyancy boundary conditions.

The upper layers of the ocean have quite a different character. The upper
layer is characterized by wind-driven velocities which allows q-conserving flow
about the gyre, including the boundary layer. There is an injection of ''new
fluid" at the outcrop window. but the volume flux is probably only about
1/3-1/4 of the volume flux in the gyre, indicating a large amount of recircula-
tion. In the intensive inner part of the gyre the relative vorticity becomes
the same order as the planetary vorticity. This breaks the Sverdrup restraint
on north-south velocity and leads to a "runaway" region. This explains the
vastly increased recirculation in that region. Below this region is the
plateau, which is a fairly extensive depth interval in which not only is q
'conserved' along flow lines, but alsoJgd¥ *¢. Rhines and Young (1982)
explain this in terms of Prandtl-Batchelor expulsion of gradients due to 'shear
dispersion’ which tends to equalize values of a tracer along streamlines, see
following lecture.

REFERENCES

Pedlosky, J. 1979. Geophysical Fluid Dynamics, Springer Verlag, N.Y.

Rhines. P. and W. Young, 1982, Homogenization of potential vorticity in
planetary gyres, J.F.M. Sept.

Welander, P., 1971. The Thermocline Problem, Phil. Trans. Roy. Soc. A.
Vol. 270, pp. 415-421. -

NOTES SUBMITTED BY
MARK SWENSON

III. DISTORTION AND ENHANCED DIFFUSION
OF PASSIVE SCALARS BY FLUID STRAIN FIELDS

Peter B. Rhines

To gain intuition about the 'active' tracer, q, we first discuss a passive
scalar field advected and diffused with a background shear and strain field. (Fig. 3a).
We can write a velocity field as
dul
. - . o — ]
w (xe8x) = ui(x) >, dxy (3.1)

where the antisymmetric part onhqﬁa relates to rotation or vorticity and the
symmetric part relates to a pure strain field. Consider a passive tracer
© (X ,t) which is assumed to obey the foliowing 2-D advection diffusion

equation,
De P \fe (3.2)
E




Frg. Za Ore of the nany tr1elds to which shear-augmentod
drsperstan ta raetbevent, Chlorophvl]l patterns it trne zea-sur t e
Just south ot Tceland (top lefrt 13 abt &TLE N Z2950° WY, The
domarn 1 s abcuk 200 bm wide. White streals are cloud. Note
Prepander ance ot ipoles. Fhytoplankbton are to some 2otent a
Cassiv2 tracer but also can undergo rapid growth or decav
at rates that Jdepend oan natrrent suppl s, onleed laver depth
and thetr uwn concentration.
B - e - Qm—————————e |
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where K is the molecular diffusivity (further discussion is given by Young, et
al., 1982).

STEADY SHE AR
A first example is a uniform shear flow, u = ( ‘7’. o)

(‘S.Z) becomes

Py NS hig
aam— + — - KV .
e Y 5x (3.3)
Take the tracer distribution to be striped, at t = o:

\9(§‘°\ = 1 4+ St el-% (3.4)

If there is no diffusion (K = 0), Ois advected, then we define the
advected coordinates,

t
X = X - o(.)/ (3.5)
and the solution is

& = | + s..«ﬂ&t-xxf() (3.6)

It is noted that the y.component of wavenumber in the Fourier transform of
increases as ke t.

When there is diffusion (M #0), we try a solution of the form

V= ) o L (3.7)
This gives X
2 2 —_
%’{ A c&(n—d&)@-" 3.8)

Then the solution is
© = exp (- )bt + 3 Y ) s~bZ a1 o,

In order to consider the dissipation of tracer varlance \9" , multiply
eq. (3.2) by © and integrate,

ji;; =~k \9o\’ (3.10)
ot

where the bar indicates an average over space. Now from eq. G9),

\;7;|‘ = Rl g (- K et o o) e

~
\VO\ increases like 1 + o¢2t2 until t & (Kk2 oK 2)~1/3 as
shown in the figure.
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a— bure advection, 4 =0

100

Skt eve ve)
o @
< (=]

»
-]

20

00

as seen in eq. (3.11), the ordinary diffusion time Is (Kkz)-l. On the
other hand, in the shear flow the increased gradients cause diffusive
processes to become important more quickly.

Then the enhanced diffusion time ty is (szotz)-lla, which may be

written tx = (L2/K)P~2/3 = (L/U)P1/3 yhere o¢= U/L, K = L7, and P =

UL/K, the Peclet number. Thus for typically small & (P 3> 1) shear-augmented
diffusion spreads the tracer along streamlines over a time intermediate between
the diffusion time L2/K and the advection time, L/U. If the streamlines
close upon themselves to form a 'gyre' this_process acts to replace the
initial values '00(x) by a distribution ®@(¥) which 1s the (generalized)
average of \®% about streamlines ¥ . If OPU¥)# o , a second, slow stage
of adjustment occurs as diffusion of the tracer (locked to the W - contours
by the fast process) occurs, over times =~ L2/&. Under the right boundary
conditions the result is the eventual expulsion of gradients of @ from the
gyre. This is known as Prandtl-Batchelor expulsion (see Dr. Young's lecture
this volume, page 135).

Now we suppose 19(5, 0) is

S‘c-‘}&:,os % A&.

V(% 0l =
3.12
= S T 4T o
- - e
24
Then _;1 o
Slxx) ~ -{T; e (3.13)
2o ‘
3
where a\__-_ & ({4 _% .('L‘E )
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SHEAR OSCILLATORY IN TIME AND SPACE

We consider the second example of the diffusion problem in the shear flow
which oscillates in time and space. Then we suppose that

& = (U, Losmmy cos wt o) (3.14)
Inftial condition is as follows;
where & decreases to zero as h_L(-vce .
Define the nth moment by
o>
“ 3.16
&he> = ) x"9ex 10
~oa
then we have
L&D = K<9>77' (3.17)
<x 6’>e = K<¥9>7Y +u e (3.18)

<x*®y = K<X‘l9>77 +Lu<xPd + 2"'«»(3.19)

and so on.
From eq. (3.17), we get

{9 ) = constant (3.20)

Then (3.18) gives
<xO% = K xBYy, = 9y iy sl

The solution is $1a T)

(3.22)

b Cosmy (&g CossT+
w

X®> o> = U+

~ exponentially decaying transient,

where Kx = szlu is the ratio of the diffusion time based on the y-scale
of the shear to the time of the shear.

PURL s cctsinn
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The second moment, which expresses the effective diffusion, is determined
by (3.19),

>

ue L & 14 CoswT
- 2(9)_“_: Nx;_wsm,mw [_K., (3.23)

4 A5iAwl) + 2k<e

L 8 2
(X > K(K\?),

T A
Now we consider a y and t averaged quantity ¢y \9 » , then from (3.23)

Xe> 11 Ve _&x 4 264

1T w R

<e> (3.24)
Eq. (3.24) shows that the effective diffusivity is
i '
i U VTN (zl’
- + —_— 3.25
Reff A r o Gaer ( )
Effective diffusivity is as follows in the special case
.
A Ug A m
Ky << Ber = K + § 0 T (3.26a)
>~
A U
Ky =1 Kegge = XK + 8 "o (3.26b)
A Mo
o
Y LT = K 4 T (3.26¢)

The maximum of Keff occurs at Kx = 1 for a given velocity field. When

K+ = 1, the effective diffusivity is the product of a particle excursion
(Uo/w) and a particle velocity Uos which is rather like a mixing length
result. If K«®> 1 we recover the inverse dependence of & as Taylor (1953).

STEADY STRAIN

As the third example we consider diffusion in a strain field (Batchelor,

1959) 4
| I\
(u,v) = (h’x,-—fy -\‘/ x

Then the advection-diffusion equation (3.2) becomes

9 Y
%L: . y,‘(‘)_a.g _ Xy.é—y = £V (3.28)




e —
I
I
I
l

!

¥t -8t
A particle inftially at ( X.ly, ) moves to ( Xy €&  (\ot)

It is noted that one-particle diffusivity is

%t'( ;‘ ( (XY, \" (7~7;\‘» =YX elrt (3.29)

Take the initial distribution as follows

%(x,0) = oskx ey (3.30)

The advective solution for K = 0 is

O = ws ko Yf) 00.\(‘“‘6“.\/) (3.31)

tn
o

and the full solution, for K ¢ 0, is

(L'
Q’f’ (& 1Yt )})19_

_u’t (3.32)

for long time

v > "‘"{’(“ Kx o209 > 5

If k =nm
1 QI ‘
WOl = 14 ek (el spp(- 222 -bant)
(3.34)
The dissipation time tx in this case is given by
=ML (3.35)
2t 2k -

Note the qualitative difference between the behavior in shear and strain
fields. A stripe of tracer in a steady shear increases its__ length
1ike € by shear, and its widsh like t1/2 py diffusiony Then its area
grows like t 3/2 and hence its peak concentration decays like t =3/2, on
the other hand, in a strain field, the x-width of a single stripge grows
eventually like e¥* . The y-width ap‘proaches a constant A (R/I’s{ Then
concentration \$» decreases like

* Note: the x-width of the stripe ~ t% while its y-width ~ const.
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MARKOV MODEL OF VELOCITY FIELD

Fi;\ally, we consider tracer dispersion by taking patterns of large-scale
shear and strain, and adding random time-dependence (Salmon, 1980). Then we
introduce the following flow field,

¢ = 3 T, ('t]((l*yl +{, So(f)(‘l'f, + G, tt) Xy (3.36)

where l is the vorticity and So and Go the strain rates. The model is a
reasonable idealization of geostrophic turbulence, which has a very steep

wavenumber spectrum and non-local interactions. We consider a white noise

pProcess.
<TwlLwd= 2 S(t-t)
< gol‘t) SoLt‘) > - (q‘o L-t\qolt|)> = )_ Dsg('t't‘)

(3.37)

(3.38)

Ifq’ is isotropic then I,. 9, and U, are independent and

Dy - le = TS (3.39)

[~ J
where §) = S'i"‘é(‘t) dk is the total enstrophy.
[

Define the initial condition as

L kox
\ -2 (3.40
o0l = e )
For R=0 distortion equations are
Ah,‘ = - & A‘j (3.41)
dt
where Aij = aul/éxi « A line element Y similarly obeys
Y _ A6 (3.42)
dc )
It is noted that
4 (r. k) = o (3.43)
ar ~ -~

From (3.36), (3.41),
—A_j'_‘ = - SaL-L 4+ G;t! ~\j° "“
de

% = -—S'h‘ -G:&.; *\Io&\
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This system leads to a Fokker-Plank equation for the joint probability
density ~ -f( k 'l., ,t) of the wavevector,

Q—E- -I(i.r.'u =D,k U"SM )+ (Dg +D )AAYL (3.44)

where k, ‘l are polar coordinates, k = k(usr,sur).

The moments jér S kah H‘ are found by forming S (341 dk:
)no =1
Also

(41_- &‘)" = h:'ﬂ'l,‘- = M{)(\‘oos't) - &K?(Gbs't) .

= e (3st) | Ay~ agpl $ D)

The process is not like diffusion but more like an exponentially rapid cascade
to small scale. It is noted that two steady solutions exist

f=, £~ (e Fzankf = avd')

corresponding to equipdrtion of variance, and the "k~1" gpectrum of a

passive scalar in an inertial range of turbulence, respectively. Yet here the
model (large-scale strain) is diametrically opposite the local~in-k
presumption of inertial range theory.

This result motivates yet a simpler problem
dv _ o\t) %
Qv
let y = lnyg then

dy _ <)
T

The Fokker-Plank equation governing the probability distribution P(y) is

22 | 332,

oT

< ‘
where 2D = g <x(t')u(t+T)>dY. The solution for the point source is
-~
Plyt) = Fae Spl-Yw/2)

where 6 = ts A i) % +TNT | The expression for P(x,t) is log-normal,
[ J

\ -~ Lt v o) 2/ 20]
’P(."*' T T im O % e

.
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IV. MORE ABOUT DYE AND PARTICLES
Peter B. Rhines
Wave Crests
Wave crests can behave like stripes of dye.

Consider a wave with intrinsic dispersion relation, JU = 5’.('},1‘

Add doppler shift of advecting flow J , = L+ Q’e

Using geometrical optics, the equations for position and wave-number are:

dx; _ 2L, UL

pral Y
k. PN DY TR ) ) R T O
T *(SI*UJ) ov. dx, ) bsL;J

Note that for small group velocity
scalar in a shear flow.

o wave crests behave like a passive

Exercise

Consider surface gravity waves with dispersion relation

R RY SIRE
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where V = & y. There is a weak vertical velocity present, but it can be
ignored here. Use the ray-tracing equations (*) above to solve for k(t) and
X(t) for -a wave packet released at Yo = O(y = 0 is a stagnation point of the

low). Show that the wave packet motion reverses from two effects: increas-
ing mean flow as y increases, and reduction of C,. Show that the packet
turns around where the current velocity = 1/2 (initial group velocity).

Effects of Adding 3rd Dimension

In a stably stratified ocean, fluid motion 1s predominantly along surfaces
of constant density. This is the justification for working in only two dimen-
sions. However, even a weak vertical diffusivity, K,, may be important in
the presence of large vertical shears.

Consider, for example, the Okubo-~Taylor problem from the second lecture
rotated into the x-z plane. Now

U =cos MZ cos & t

and because the energy spectrum is dominated by inertial oscillations let
@ = f. This velocity structure, combined with nonzero K, will lead to
tracer dispersion, even if K, = Ky = 0.

The presence of vertical shear is also important in interpreting observa-
tions. Drifters, for example, have parachute drogues that hang about 100 m
beneath the surface. Shear between the surface and 100 m will cause the
drogue lines to deviate from the vertical. Lines with different slopes will
cause their drifters to sample the flow at different levels, and thus move in
different directions. This leads to a sort of "instrumental Stokes drift” for
the dispersion of floats.

Shear dispersion will also contribute to the spreading of dye patches,
especially in shallow water.

Consider the dispersion of a tracer from an Eulerian viewpoint. Mixing is
along isopycnals, but isopycnals undulate, and measurements made at fixed 2
will sample different density levels at different times.

Measure191x,t) and the Eulerian velocity uE(x,t). The time averaged
flux of tracer is typically written t

‘9“*' — §t:{1 + 9“.’.“

This is the "horizontal” flux along a potential density surface only 1if
isopycnal layers are rigid. But mesoscale eddies cause undulations of

%> 100 m amplitude.

To do the bookkeeping correctly at fixed (x,y) it is necessary to keep
track of variations in layer thickness. Thus the tracer flux in a layer
between two isopycnal surfaces is

sy
—

o' o ) "‘“:i‘ +I§T§.+}§_“\w|
® ® ®

S ————
APE——

ﬁg‘f

s |
+
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where h is the layer thickness and the overbar represents a time average
within .the thin layer. See figure 3b.

— __;b_e‘.term © '\‘5‘ is a Stokes correction to the mean transport 48 K .
4 u'e is the standard‘isopycnal mixing'term, representing the eddy flux
of tracer variations as seen on an {sopycnal sheet of fluid with zero thick-
ness in the vertical. The two remaining terms tend to be smaller if

h'«h.

The point is that the standard isopycnal mixing term is only one of five
terms in the transport formula. The Stokes correction term could be large if
there were systematic motion of boluses of fluid at some level. In this case
transport would depend on large vertical gradients of the mean concentration.
It would thus behave like an off-diagonal diffusivity, lateral transports
resulting from vertical gradients. This 'bookkeeping' is celated to the
transformed-Eulerian mean equations now being developed in meteorology (see
Andrews' lectures, this volume, page 99).

Particle Transport

The Lagrangian displacement vector of a fluid particle is
o . . e a
X (‘E‘\L‘f)

where t is time, and XO and t© are the position and time of particle
release.

4 XE) is the average position of an ensemble of particles. In practice
this ensemble average is achieved by releasing particles from a point at
several tlmes. This gives a valid ensemble average only if the ocean is
statistically stationary (or nearly so) and if the release intervals are long
compared to the characteristic time-scale of the meso-scale eddies.

The probability density for locating a particle at time t and position X 1is

Py, I x°,+°)

= Sxﬁ(vsﬁcl!“’\f’) A
~ (_)t ~

The Lagrangian mean velocity <.gL>> is not adequate measure of tracer
motion, because dispersion about the mean is large. In the ocean the kinetic
energy of the eddies {s generally at least as large as that of the mean flow.
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Lagrangian Diffusivity

The\Lagrangian diffusivicy L L Ly
Ky (£ 1x2t) = <wy eb]a) (O X))

where QL is the Lagrangian velocity, &L the particle displacement, and
X0 the position of the particle at time t = 0.

For simplicity let X° = 0.

men A o MySS =k K
Q't<)<‘ X) ) IR

-t
Now . Q — . ~ A'N
o (£ %’y = j’c’RJ‘ (T) 4%

where Ri;( T ) is the covariance of particle velocities separated by time
intervaf .

R, 7)) = <uj"(t) @ (e >

Rij is assumed to be stationary in time (i.e., 1t does not depend on
t) %his implies, however, that the Eulerian fields are spatially homo-
geneous. Otherwise over time a particle could wander into a region of dif-
ferent kinetic energy, say, which would change Rji(‘t ).

->Jd
In the limit t - tO the Lagrangian statistics converge to the Eulerian
statistics: +
L 3 ]
Lu > — gét (EJTZ‘

Velocity correlations will decrease with time. The area under the curve
Rj () can be viewed as the Lagrangian diffusivity.

)

«—_Lagrangian diffusivity

[

Kij can be split into symn:atric and antisymmetric parts.

‘C" = . + A“
.l S‘J ‘l
where S13 = 1/2 (Ky 3 + Kji) symmetric part
and  Agj = 1/2 (Kyj - Kjyi) antisymmetric part.
The trace Syq = « 4 <,“.“\(_">
-1 dr N \y v [V

The antisymmetric part, Ajj, is associated with <u{X;” - Uyxg 7 , the
“swirl" of the fluid particles. This is equal to minus the ensemble angular
momentum, 3 X5, w .
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The mean square particle dispersion
. L A &
l XSl =2 3080 R, (2)d T 4t
Y
= 2 |0 (k)R (Y
J
For short times Rj; is approximately constant, and
pX ks
Ayl = U Rpte) = A<l

In other words, for short times decorrelation has not occurred, and ensemble
particle dispersion is linear in time.

For long times
o

(lﬁ(") = ?-t SQ(R-CL(t) ‘l't gy S (random walk)
27t Ra et

Typically one expects S: R:t{®)Y4dT —p a constant. But for a
saturated wave field this constant is zero. Th#s is also the case in a closed
box, where dispersion is limited.

Typically particle dispersion follows this sequence:

1) Linear dispersion at short time <|x*> ~ t,
2) Parabolic or random walk dispersion at long times
possibly followed by

3) saturation <|{X|» ~ constant.

x> ~ tl/z,

— e —  —a ==
X, CQ@ &
7
A
B v
™ t
*\
.
— Al b
o i SRR
A Y -

Note: In realistic flows there may be several stages of saturation as

the ensemble of particles fills out successively larger domains of flow,
such as the nested set of gyres one finds in the oceans.

‘ Envelope of Particle Dispersion
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If there is a mean flow, as well as turbulence, the picture will be tilted
relative to the axes, and the particle envelope will move linearly away from
X0, Obs~rvational examples of this dispersion envelope are shown in Figure
4, from experiments involving neutrally buoyant floats.

The time for the mean flow to emerge from the turbulent dispersion is:

+ > At <_‘_f_:_)"

where

At = S:‘Zc;(’t\ e / R10)

Note: The interpretation of Taylor's diffusivity is difficult if a curved,
sheared mean flow is present. How does one separate eddy-and mean- ?
Shear dispersion intermingles the two.

Note that the Lagrangian energy spectrum is defined by
L 2 —~
o) = § . (0)coswT 4T
J > 1]

In the zero frequency limit,

Lin 5 w) = € R

w2
which is the Lagrangian diffusivity.

Stokes Drift

The Stokes drift may be defined by the difference between the Eularian and
Lagrangian mean velocities, (liL> - <UE) . A Taylor expansion gives

<gL>= b L<xt VuSa L.

for displacements small relative to the scale of EF In this quasihomo-
geneous limit xL(t/x,, to) may be approximated as a weak function of X,
and a strong function of X~Xg e

But c
{X7= <S utdty = <Sg &t 4. ...

80 the Stokes correction is

L
(Xt Ty = Oy —dag 9%
p - aYJ AYJ.
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Fig. 4a S0OFAR float tracks (daily positions plotted) from

the Sargasso Sea in the MODE-73 experiment (from Rossby and Webb).
The squares are 1° wide. The floats are nearly Lagrangian particles
at depth 1500m.
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Displacement »f floats in E/W and N/S directions, a and b respectively, against time
after launch of each float. Bold lines show the expected dispersion (standard deviation about
the centre-of-mass) computed by integrating the auto-covariance functions and adding in the
mean flow.

e IM;JI -
Lagrangian auto-covariance tensor averaged over eight realisations.

Fig 4b x~t and y-t diagrams for these floats and corresponding
Lagrangian covariance (as a function of time-lag). From Freeland
et al. 1975.
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the second term
| Y €
<\A-,‘ 3—)—(,> =<, SB‘: é\') r(u‘-j‘ B“f) -+ O(a.‘)
oX;j ) du:
where a Is the disturbance amplitude.

For nondivergent flow

Du'f
——J - o
X
and so _ } v ) é &
-, L, = 2.« . Y= ¥
to O(g‘L)
Thus

<U'.L>=<‘~l€> + é_i'_ + o(d?)

éxj

In a pre-existing mean flow,(g? with curvature there i{s an additional term of

order
D:Up
S %, 9%,

Since {1 = 0 at t = 0 the Eulerian and Lagrangian velocities are nearly
equal for short times.

Examgle: For surface gravity waves the velocity potential is

4 = a‘:“éw Qz-uf)

The principal diffusivity is Kyz, expressing the orbital aggular momentum of

the fluid particles. o :D
[ - = (Kz - 'L)
cuts ().r‘/>' + 53 (

The diffusivity is this large, because for surface gravity waves there is no
separatio’ between the wave length and the vertical scale over which the
intensity varies.

Note: The validity requires only that the particle displacement be
much smaller than the scale of variation of mean quantiti{es. For
waves this means small steepness, while for turbulence it requires
slight variations 1n.laj over an eddy diameter.

o
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In general, the Lagrangian velocity field is divergent:

3 dKiy
5. (G )+

One simple example is the dispersion of a dye spot in a closed box. After
a long time the center of mass of a group of dye particles,(l(}'(: | xo, T¢)>,
will be found near the center of the box. Thus <5HF-> will in the mean be
towards the center.

Another example is a spot of dye released into an eddy field (say, the
planetary boundary layer), near a rigid boundary. If W is the velocity
component normal to the boundary,

L
<wE)EO beo <w > >0

i.e., the average vertical velocity of all particles released near the
boundary is positive, yet the Eulerian-averaged vertical velocity vanishes.

The correlation between Lagrangian dispersion and eddy activity can be
seen by observing ensembles of particle releases in the ocean and in numerical
models. For example, Figures 5 through 6 depict particle release patterns
from a two-layer eddy-revolving general circulation model of Holland (Holland
and Rhines, 1980). The model has three layers, an eastward jet in the center,
and two recirculating gyres. Figure 5 illustrates the tendency for particles
to remain in their half of the domaia. as well as the greater dispersion near
the jet than in the recirculating regions. Eventually, the entire lower gyre
gets covered. In Figure 6a the Lagrangian velocity is seen to be most clearly
defined in the recirculating regions. Figure 6b shows the convergent nature
of <UL> within the gyre.

Figure 7 demonstrates some of the hazards in relying on the Lagrangian
mean velocity alone to describe particle dispersion. Thesc¢ are numerical
simulations by Russ Davis of particle dispersion in one dimension by turbu-
lence. In the top curve the turbulent energy is spatially homogeneous and the
particle distribution is symmetric about the origin. In the lower curve,
however, the turbulent kinetic energy increases to the right. Thus particles
which initially move to the right experience greater diffusivity than those on
the left. generating the long tail on the right side of the distribution.

In the top curve the Lagrangian mean velocity is zero. In the lower
curve < UL>  ig directed to the right since the tail pulls the center of
mags of the distribution in that direction. The mode of the distribution, on
the other hand, moves to the left. Clearly < UL> alone gives a misleading
description of the motion of this particle distribution.

Example: We can tie together some of the ideas of one particle diffusivi-
ties, eddy fluxes, and their ambiguity with Lagrangian-mean flow by the
following thought problem. Suppose a 2-D incompressible fluid is executing
perfect wave motion with particles moving in clockwise circular orbits, GE =
0. At t = o a tracer gradient,

o =AY
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Fig.5 Time-exposure of particle ensembles released in a two-layer
wind-driven ocean model of Holland.
in the upper layer symmetric about the middle latitude. For short
times (time in days shown) there is an identifiable mean displacement

plus much dispersion.
of occupation of particles.

There are two mean gyres

particle clouds can look very different.

The gyre boundary is evident in the density
Note that individual realizations of
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Fig. Q3. 6b
The Lagrangian mean dxsplacement wX(tgt® x* for

several release points x° In upper panels the ensemble mean
shows the sense of the gyre well but release points in more
turbulent regions (lower panels) are dominated by mixing and
seek out the centroid of the gyre.
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is impressed on the fluid. Notice that a mixing-length calculation would
suggest an eddy tranmsport of 19 in the x~direction:

—— _——T-—
:2-9.-,0; g._Q:_v.th_‘
Dt .1 o

where the averaging is, say, with respect to fast time.

Now

W

G‘:—(y‘—ﬁ)%‘——? = Wu' = -3—‘—5(1‘-\/, u = - Lk, <O

=

near the initial time. Since K, is just the orbital angular momentum of a
particle, the x~transport is nonZéro. By drawing a sketch one Sees indeed,
\$' and u' correlated.

Ah, but you say it is a nondivergent flux, hence inconsequential. So, now
modify the problem by placing a rigid wall at x = o, where W vanishes. Let
the orbits increase from zero in some manner, to the right of the wall. Now

u' is divergent, and ¥ changes with time. Yet paradoxically, at
lowest order we still seem to have closed orbits and perfect conservation
of ¥ following these orbits! To resolve the paradox note the identity

»
o ax f
so that x .
fvrax = &,

: I(x)

using (4.1).

Thus the orbits must in fact be slightly open, a Lagrangian

drift moves particles toward

negative-y, carrying ¥ downgradient . via

38/3T = -V-29/dy .

The Euleriah observer instead sees an eddy flux toward

negative-x along ® contours, and vanishing mean flow, ?®/3T = - - u'®’ =7

Both agree that _
2% 5o

<
but the observers differ as to why.
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V. RETURN TO DYNAMICS
Peter B. Rhines

Much of the discussion up to this point in the lectures has focused on
small-scale structures as turbulence stretches out tracer concentrations,
increasing gradients and leading to diffusion (Figure 3). But a significant
problem for the oceans concerns large-scale transports and the resulting
concentrations of tracers. An example is that of tritium, a by-product of
atmospheric nuclear weapons testing that is injected into the ocean at the
surface. Following injection, the tritium mixes principally along potential
density surfaces below the surface. Depending on the "topography" of these
sur faces, the tritium concentrations can take on a variety of forms. Figure 8
shows a set of tritium profiles for different Jo surfaces, according to
Sarmiento (1982).

QuasiGeostrophic Eddy-Mean Flow Interaction

For an active or passive tracer q, divide into time mean and deviation
components q =‘qf + q . Then the advective-~diffusive equation leads to

T e vag sug Vg = o8¢ +FY

where ZS represents digsipation and F forcing. If time mean quantities vary
slowly in space, then V. u'g‘“v is negligible. Then for no external
forcing, the principal balance for stationary flow is between down-gradient
eddy transport and dissipation:

vy Vg = - &Y

Now introduce a quasigeostrophic, multi-layered fluid. The momentum and
potential vorticity equations are, respectively,

2 (heu) = - Ex(Rigu) - HWulpe Lyl + o) + %= D

%t% +g_“-V%':‘ = -A

B
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on GEOSECS 1972 data. Concentration is greatest near outcrops
(stippled) where the o0 surface 1ntersects the sea surface.
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N ]
. : - \ A
where % = %\"‘(3*’4".\3 "V"!\g. ai'ui*"- .-"‘T‘i-o(ﬁa). Z 1is a vertical unit
vector,XQy the horizontal gradient, and q the potential vorticity in an

isopycnal layer of varying thickness, h;(x,t). X and F represent external
forcing, D and A represent dissipation.

——————

After averaging, hi{qu is the dominant rotational eddy stress. It can be

written as
——— o []
\
N ——— .
el R N
where the terms on the right hand side represent, respectively, the net

Lagrangian Coriolis force, the lateral Reynolds stress, and wave drag on the
level interface. uy = (u,v) is the horizontal velocity.

Averaging in x leads, in the inviscid, unforced case, to

»
L ‘si\&x = c‘i%’/

while ensemble averaging yields

where q = Q+q', {q'> = 0. The right hand side of the latter equation can be
seen as the 3-D, time-dependent response to eddy forcing. Without time
dependence (that is, in the statistically steady case), the equation describes
what might be called the turbulent 'Sverdrup' balance, with eddies driving
fluid across the mean geostrophic contours, Q = constant. Maps of Q are funda-
mental references, as free flow tends to proceed along Q-contours, forced flow
across them.

In order to predict the nature of the eddy stress(%Hﬂ) one must consider
the following factors:

1) Statistically steady stirring of the mean gradient ‘ZQ (use
mixing-length arguments).

2) Memory loss of q due to the enstrophy cascade.

3) Temporal growth and decay of eddies.

4) Spatially advected growth and decay of eddies.

5) Effect of external forcing, F.

One can use the Rayleigh damping model,!&i =aRq + F, to introduce memory

loss from dissipation and the enstrophy casc®¥e. If F = 0, then q=» q. Then
L -R(e-t')
@S = 28 frupniugi)e >dr! o)
1) ¢ Qx‘ - ~—TN— -R

< \
) e > e
-d a‘) J
displacement over one relaxation time.

If F =0 and R<& L/u= (inertial time scale)~1l, then {q'ui} :-Kijgg,
where<K1j = < ui(x,t)xi (t)> is the ‘'arrival' Lagrangian diffusivity énd
is like Taylor's diffusivity.
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Note the dlfference between ' arrival' and 'departure statistics. The

former considers x‘“') (Cq!l( ,T) ,that is, particles arriving at fixed point x
from various or1g1ns x;( ‘-whlle the latter considers x: (t} x(o) ,t9),

that is, particles departlng from a fixed release point x\© The two
Lagrangian velocities can be equal and opposite in the case of motion in a
gradient of turbulent energy, for example.

Example :

Mean wake induced by a Rossby-wave packet in a 2-D homogeneous fluid.
Expanding in wave steepness with vQ = (O,(} ), gives

ol "’w P‘U;, o =D V' AxT)ws® © = kx-wt
O( F_LL) :_\7\|'t + \ \‘}‘J = -U.T;",\A(o) - - jl\*h’:\v‘{*k\.ﬂ)

where

VEVA
The eddy stress is then (\7\1'("‘7\#“‘} = :‘;’[V(‘E—_A"\]{E ‘t“sr V(A")

and this represents the q-transport rotated by W/2.

D

W=

For a wave packet, A"\VA 3D ‘{‘ Vh whence one can write

-—II ) (9‘ 1 v ‘E\ a
(SHTowTo = —Vg < e Eu”
where E is the kinetic energy density <3 IV"“ 7 Note that the eddy stress
1s the gradient of the kinetic energy density reflected about k.

As the wave packet moves north, fluid is pushed westward as the packet
approaches, and pulled to rest as the packet departs. Although the mean flow
is ultimately unchanged, low-frequency Rossby waves radiate to the west.
Figure 9a gives a schematic picture of the mean flow tendency from the eddy
stress; numerical simulation results are shown in Figure 9b, which demonstrate
the westward and eastward mean flow induction and the Rossby wave radiation.

An entirely equivalent approach is that using Taylor's diffusivity form,
< ("‘) - L. & - {l'l
% -]
where the Lagrangian diffusivity of the wave field is

= (uc'." °© 35/&;‘

K'n ,
3% 2
A \
written in 'wave-crest' coordinates (x',y'): A *
»

K,-'.' 0 as the wave -cket approaches (downgradient mixing) and ‘2."!( 0 as
the wave packet depurcs (upgradient mixing). So Lagrangian diffusivities need
not represent irreversible mixing. Note that Ky is traceless, except for

~ R
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Fig. 9 Above: potential vorticity transport (solid arrows) in a Rossby wave
packet traveling north (double arrow is group velocity, wave crests
dashed). Below: large-scale flow induced by this transport. The packet
is invisibly small on the east side of the induced flow. To the right is
shown the zonally averaged zonal flow. The above theory would predict
the westward lobe with counterbalancing eastward lobe left behind at the
origin of the packet. Here viscosity smears out the wake.
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transient situations. The off-diagonal terms describe rotary motion of the
particles. Several forms of the induction equation are as follows:

LA SRRY A -v.(va?»‘)
- 2 E

a’l‘ a - ak.'t
-~ = (CJQlex)) - § ox;
where Cb indicates rotation through an angle, 4>equal to twice the angle
between k'and east, minus W,.

Scale analysis shows the principal response to be 'Sverdrup’' in the
vicinity of the packet, that is

_ . = [}
P;(V:) D&,y WS = PR G V4
%y X

In this region, the Stokes drift, given by d«; /ax, just cancels<v , leaving
nearly vanishing cross-contour Lagrangian mean flow

. .

(VD2 Kve D>+ 2K o o( L/Lu)
a!(;

wnere Ly 1is the scale of variation of mean properties; i.e., the packet scale.

However, significant Lagrangian drift does occur in the radiated waves, where

there 1s no Stokes drift to cancel <VE> But unless the geometry is

re-entrant (that is, 'atmospheric' as opposed to ‘'oceanic'), the induced flow

can only achieve the weak level of ¢ ug)> ~ K , while the cross—-contour flow

is still weaker by the factor (L . [

Example:
Zonal flow induction by a moving corrugated wall.

One-layer, homogeneous-in-x. There are three different 'mean circulations'
in this example!

The governing equation is v";‘, . ((* a Ty O"f) = o
< - \

Averaging in x gives
~ N —*—-‘i

(Y \ ~ - - b ® ( ‘\

dt -7

E AN . N F )’1 F 7

:77\~;_;’_r, — g using Taylor's diffusivity. This glves an
/7 4 Eulerian mean circulation, above the maximum
C of topography, valid for both turbulence and

waves, of ‘J'C:“‘ - - L{z(y _70

As the Rossby wave front progresses northward, the region of westward Eulerian
mean flow expands with it.

For waves, the Lagrangian mean flow is then given by

—— Y

[ S e ‘;E - 1«.

u ;7 )
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With weak damping, or with only a slow increase in the driving amplitude,
Y4y /9y  will be small, O(L/Lm)™> . The difference between u  and

u is accounted for by looking at the fluid between topographic peaks,
which was ignored in computing u.

But now consider a third 'mean circulation', the Kelvin circulation.

M= fudl
1 4
integrating along a contour ¢ moving with the fluid, which originally lay on

a latitude circle ( € is assumed to be closed, as it would be in a polar
stereographic projection). Then one finds [V according to

d“ é \ By by circulation theorem where S is the area
& &x S;( v‘\il 49 'north' of T .

- SS i(v‘“ \;) A_Ajbecause “C is a material surface.

3
A_ é from the barotropic potential vorticity
= - = 7 )(Aj =
ax equation, since q = Uxufy + y is
S conserved at each particle.

Therefore |7 ==‘:_B S(y“'y,') dx and i1f L 1s the length of T , the average
Kelvin circulation is given by

—————‘
n Loa(yroyt)
-_— = k3 -
I A e &
which is equal and opposite to the Eulerian mean circulation.

This emphasizes the importance of defining circulation unambiguously.
There is no contradiction, since [' represents neither the time-average motion
of any fluid particle, nor the time-average motion at a fixed point. In fact,
this sketch of vorticity induced by north-south particle displacement suggests
the senses of both [ and E .

plane
Rossby - '3 S 7
wave, AR . | Ik

dye 1line originally on latitude 1line
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Note that if the wave maker exerts no net force on the fluid, then the
total momentum of the flow must be conserved:

-
- X
~ -
But at unforced latitudes, U” is westward. Thus a sharp eastward jet can be

expected to develop at the latitudes of the forcing, increasing in magnitude
as the induced westward flow expands. (Figs. 10-12).

In numerical circulation experiments in a box, eddies are generated by the
wind-driven eastward jet and by the slower westward reverse circulation near
the latitudinal walls. Under quasigeostrophic dynamics, without eddies there
could be no mean flow below the surface layer. But with eddies there is the
possibility of a vertical transfer of vorticity by means of wave form-drag from
the sloping of the interface. A dramatic case 1s found in Holland's recent
simulations using a 3 layer x 4000 km x 4000 km quasigeostrophic model. The
gyre circulation in the top layer is wind-driven, but the gyres in the other
levels are generated by this vertical vorticity transfer via eddy wave-drag.
It is interesting to note that potential vorticity is homogenized over most of
the middle layer by this eddy activity; the B y 'ramp' is altered to a plateau
bounded by sharp gradients near the walls. Figure 13 shows the contour plot
of potential vorticity in the middle layer. Fig. 14 shows an analogous plot
for simple two-dimensional turbulence. 1In either case, the resemblance
between q and a passive tracer is striking.

This exclusion of potential vorticity from a large region of closed
Eulerian mean streamlines is an effect of mesoscale eddies (via shear
dispersion). 1t is the analog of flux-expulsion in magneto hydrodynamics, and
may control the general circulation. It illustrates value of passive scaling
to dynamical studies.
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Fig. 10. Time-sequence of streamline patterns showing rectified

zonal flow in a computer simulated, homogeneous, beta-plane ocean.

The forcing is purely oscillatory, a Gaussian wind-stress curl at

the center of the basin. The domain is 2000 km. wide with periodic

boundary conditions on velocity. The region of forcing is 250 km. wide.
After forciny begins, the wave/eddy field becomes established, principally
went of the forcing, and begins to rectify. An eastward jet forms  beneath
the forcing, westward flow elsewhere, as in the theory. The net cast-west
transport always vanishes.
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Fig.11 ‘Current-meter' record to the east of the forcing
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Fig. 12 An experiment just like figure 1, but with realistically
rough bottom topography and (2-layer) stratification. The upper
panels show upper-level and lower-~level streamlines near the beginning,
and at 10.6 months. Now the rectified flow is dominantly westward due to
the bottom-topographic drag. HNote the resemblance of the large-scale flow
to the gcostrophic contours, f/h = constant.
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Fig. 1Z The potential verticity in the middle layer of Holland’'s
I-layer i 4000km » 4000 km wind-driven circulation model. The
s-effect is dominant at the edges where the flow is weak but

it is distorted by eddies at the edge of the wind-gyre (left-
center) and homagenized in the gvre interior. The force
corresponding to these eddy transports of q is the inviscid
wave~-drag of the upper layer on the layers belaow. which carries
the mean circulation downward. Compare with tig. 2
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Fig.14 In two-dimensional turbulence the vorticity is an "active’
tracer which cascades to large wavenumber.




- 48 -

PARTICLE MOTIONS IN STRONG WAVE FIELDS
Glenn Flierl

Drifters of various types (Swallow and Sofar floats and surface drifters
in oceanography; ghost balloons in meteorology) are used to characterize the
mean and mesoscale motion in the ocean and atmosphere. In both of these situ-
uations, steep waves are present. For the ocean particle speeds (u) may be 2
ms~1 while typical phase speeds (c) may be 0.05 ms~l. For this situation
the Stokes' drift may be large. The Stokes' drift for very simple periodic
flows and some geophysical situations where u »>» c will be considered. Inter-
ested readers can find more detail in Flierl (1981).

First Example

These are two simple problems which illustrate wave-induced mean drifts.
The first example concerns the case of a longitndinal motion with flow
parallel to the direction of the phase propagation. As an abstraction
consider a square wave of wavelength N , velocity amplitude u, and phase

speed c.
PARNICLE
v LOocATIeN
—~&
"“0 - ‘

K==\ Xzo0

(V8

o

Zonal velocity
at t = o as a
function of
zonal position x

1

The mean Eulerian velocity Ug at any point is zero. The Eulerian wave
period Tg = A/c.

Consider now the motion of a particle placed at location x = o at time t =
o. The position of the particle can be calculated by solving

X = u(x-ct)

Shortly after t = o the particle is moving eastward at speed u, while the
wave 1s translating at speed c. The trough of the wave, beginning at point x
a - )41( marked with a + on the figure above), will catch up with the particle
at times Ty such that - 3 + cTp = uyTy or
s ——
2(c-uy,)
with the particle being at location

" 9 )\
2(c-\,?

xl = UoTF =
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AT '
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T,

A= uon

During the next time period, the particle is moving backwards with respect to
the wave so that it collides with the face of the next wave (the point *) in
time Tg

- N+ cTp + CTB = uolF ~ 4oTB

or

B =
—Z(cHu,)

and the particle is at location

Ue A Ue A

2(c-ue) Z(CQ.\Lo)

Clearly the particle spends more time in the region where it {s moving in
the prograde direction than it does moving retrograde Ty > T so that the
net displacement over a Lagrangian period is positive. Therefore, as this
process repeats, with succeeding waves, the particle drifts in the prograde
direction at a mean speed.

Ky =

k4
X
L. Yo cE "
Tet Tg <

where € {8 the wave steepness uo/c. The position of the particle as a
function of time is sketched below for u, = 1/2.,

U, =

1y

vy
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While this discussion illustrates clearly the reason for the Stokes drift
-- the particles spend more time in the prograde part of the wave than in the
retrograde part -- there is a much simpler procedure for computing the mean

Lagrangian velocity, originating with Ursell (1953).

Consider the equation governing the position X of the particle in a
reference frame where the wave is stationary (X = x-—ct)

X = u(X)—=<
e
X position after initial position
time Ty .
L. L4
——— X

=

From this equation, the time necessary to move through one cycle of the wave
(the Lagrangian period of the motion) can readily be calculated

=N 2 A
A dX
-rL = S. dX A = dX = —_—
uix)-c W(K)-< C-ulx)
) o
A
= * dx 4 AX, x_c_
C ¥ o C-Wo i Uot
Y
° 2

During this time, the particle moves a distance

Ax = AX veT_ = =2 +T_ = (T _-T¢)

so that the net drift rate is

ax - (4= TG/TL_)

u,_ =
S

(This is a general result which applies to other examples.)

. \4 .
- sttt o

PP
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A more realistic but still a simple example is

U= U o R (x-ct)

4X = (uaco«;k)( —c ) et

so
A Te
T: __.—d——'x" - — c uo“.
w -
» C - wotoske X | — (Mor, )L
oo wo >C
and
_ sl ¢ (- (o0t ) woee
W —_—- =
TL
o > ¢

2
For weak waves, U = ¢ 1/2 (worc) which 1s roughly Stokes'
approximation

2.0,
v
EXACT
1.of
STOKES
(o] It 'S i " P N N
° 10 %o
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For uy > ¢, there is a stagnation point in the flow (in the moving
frame) through which particles take an infinite time to pass. Thus U —= c.

Two Dimensional Wave Fields

The simple formula above can be applied directly to the case of a two
dimensional steadily propagating wave

11/: ,q’(’)(—ct)j)

by a simple transformation to coordinates (X,Y) moving with the wave.

X=x=-¢c¢ct, Y=y

The particle coordinates evolve according to

.X: '/L}'Y(X)\f)“‘- = "CL\( (K)\()

and J- 0 4y (%) by (xY)

3

where qb:.Qq.g‘( is the streamfunction in the moving reference frame.
Particles do not leave <¢ = constant lines thus Y = y(X)

df()(, 11()() )+ C'7(X) = 1"'(')(‘.,,\,’o) A

Solving this equation for y(X) and adapting the formula above for Ty,
gives

T S gL, Jod = <l
L = e G U L= ¢C -
o ‘ia ( x, j (x ))

i
N

Note that the Stokes drift will be nonzerc whenever T + Tg.» But now we
shall see that it is possible to have Ty, € Tg so that Uy is retrograde:
this is the second simple case. Consider the u velocity on two streamlines
sketched here
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The velocities - 4’\1 (X,-j()()) are

For particles near the wall (e.g. streamline 1) W (X)/c~tcos X and

Uv/c ~1 €Y  i.e., the drift is prograde. For particles near the center of
the channel, however, (streamline 2) the velocity is always retrograde ( >

0) Wi ~e'[L-dcn X],The particle always sees eastward velocities because the
north-south flows push it to the southern side of lows and the northern side
of highs. The average Lagrangian drift is “"'/c {-Ji-¢* which is retrograde.

Surface Gravity Wave Problem

For particles at the surface of the fluid y(x) = (l(x), Cﬁy = ¢c~u. The
kinematic boundary condition at the surface is

and Bernoulli’s equation gives

2
(u-c) * v

+ ¢t
— 4 = -
z 2 3 1 P
These equations lead to

\
-231

For weaker waves, use Taylor expansion to get

L = l g dX (\+ 3_‘1 4»,‘_1,‘1—?_ j:'.]‘)

T, = aX

cl.
However, (, 1 4X 18 not zero and it {s necessary to first solve the first
order problem before proceeding. It is more convenlent to use
T . g)‘ dX
L~ °

-ul )
. < x,1u " x(“°/<_)‘+---]
‘{S AX 4 Yele ¥ v

[

Ao i b P i |
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klt\"— J ]
Then JL— = C —2—1 [" + _,,..“k bk H (H is depth)

when ?l is the wave amplitude.

1
For irrotational motion we can prove u"/L b AN . Since V&“’ (irrotational)

Su A a—-_ S.-»
S., «is 1) N go kclx ) C>‘ 9
A i i
L}r S.; A C\X = 0 ___O )
Ads = Ab dt where T;Ju’,\/" so
g "L t = }:.
but ° TE
T A S;
t =
Th ° 1) ] T <
€en |
AN T > AR Lo dt
: TL, go T/.I dt " ( Tl-— g.; b ) .
<€, 2 “ X since
i.e )\ /T‘,T\; >/ S-\— /T 8 z ./_\_ .
€., . T_v
and
V\\./" _ L | — Te /T.)

Return now to the case of periodic Rossby waves in a channel and consider
the release of a line of particles at X = 0. Using the methods discussed in
the above examples, the positions of the particles as a function of time can
be evaluated. In the fixed and moving frames the trajectories as shown in
Figs. 1 and 2. For small € , the Lagrangian drift velocity UL, is mainly a
function of y but as € 1increases Up, hecomes a function of the initial
longitude as well. For € > 1, there are trapped regions in which the parti-
cles move with the wave and G, = ¢ and except for a thin layer near these
trapped regions the rest of the fluid moves retrograde in a narrow band at a
rapid rate.

The trapped particles drift at speed ¢ because they circulate on closed
contours: thus after one Lagrangian period A X = 0 so that

Ax = DX "CTL ‘:CTL_

— AX
W, = — - (o

T

e b . s e
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Wm o,
s Y

Fig. 1 "Spaghetti” diagrams of particles set in a channel wave along X = O.
The lower figures show the pilctures viewed in various moving frames
of reference (x(t)-ct,y(t)).
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Fig. 2. a) Lagranglan drift rate as a function of initial position

(Xo,yo) for various wave amplitudes € . A segment of the
channel from x = 0, 2% ; y = ¥ /2 {8 shown. The contours are of

v, the labels above each sectiay are € values. (b) A different

view. The abscigsa is ‘. = (x5, yo) - Yo+ The shading
represents trapped fluid. Positive drffts are retrograde; negative

ones prograde.
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The next figure shows the simplest measure of the retrograde speed

Re v = | - THiee?
C
[ 3
2 K( £ )
(He‘

(et)

|°'5 5 1 1 'y
10 10 !
10 €
V-
v{0)
€
(T
-2
10 . s g
100 10 ¢ ' 0°!

Fig. 3.(a) Drift of the particle initially at (0,0) showing the accuracy of
the Stokes' approximation, the largest asymptotic term + W€ /21n€ and a
more complete asymptotic approximation -1+ &€ /21n(4 & ). (b) Drift
norealized by the maximum fluid speed rather than the phase speed.
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as a function of ¢ where K is the first elliptic integral function. Note that the
drift becomes essentially a constant fraction of the maximum particle speed --
the particle travels rapidly across the tops of the highs, down between the
eddies across the bottom of the lows and then back up. It spends about half

its time in the most rapid eastward parts of the flow.

The next figure shows the proportion of the area of the channel that is
trapped and moving with the wave.

0.5t

Fig. 4. Trapped area nondimensionalized by total area as a function of wave
strength € .

The Lagrangian drift estimates suggest that care must be used in
interpreting dispersion experiments. In strong wave fields, particles set
even short distances apart may have very different average drifts if the area
of the setting overlaps a boundary of the trapped region. Also the inference
that might be drawn from the Stokes' approximation that v is independent of o
is not correct, so that a zonal 1line segment of particles will also spread
due to difference in drift rates. Thus, spreading of a patch can occur, with
the two particle displacements being eventually proportional to t, even in a
field without turbulent cascades. In addition, the initial behavior of a
statistic such as the r.m.s. two particle distance can be quite complex with
the dependence upon t to the first power (in contrast to Taylor's 1921
prediction of t1/2 dependence) occurring only after long enough times so
that the particles have separated by many wavelengths. The following figure
shows the mean square of x-separation for a set of particles in the channel
( € =3). The initial transient are large and lead to an initially slower

separation rate so that the quadratic nature of the mean square separation
does not become apparent for some time.
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Fig. 5. East-west spread of the initial line of particles in a channel wave.
Here ¢ = 3.

Isolated Disturbances

Consider the single disturbance
u = up sech? kX

propagating with velocity ¢. The time for a particle to move from +Xsto

-X, 1is
X

dx
= 'dt = —r( X )
X €= vosteh kX
0
In the stationary reference frame the particle moves a distance
Alx = =2 XO + QT(Xo)

The total distance the particle moves as the disturbance propagates from
~ o2 to+ ¢ is the limit of A%, as X, becomes infinite




' - 5¢ -~
l 7 wlX) gy
‘JL = < 5_\._, c_—u.(x)

The exact value together with the Stokes' approximation, the progressive

vector estimate ( = € u) and an asymptotic estimate are shown in the fol-
lowing figure.

STOKES

Fig. 6. The displacement in a simple pulse u - sech2 X for various
strengths. The exact results, Stokes' approximation, the
progressive vector estimate and an asymptotic estimate for
e << 0 are shown.
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Some limits are:

=
d. — 5 ulXx)dx

i) For lel<cl
-c2
ii) as € - | d, - »
iii) for € » -co db 2z width of pulse

For the case of the single disturbance (moving to the west at
apeed c, the speeds experienced by particles on various stream lines are
shown in the following figure.

Fig. 7. Reduction of a two~dimensional problem to a one-dimensional case.
Solid lines in upper halves represent contours of the instantaneous
streamfunction ¥ ; dashed contours of the streamfunction in the
moving frame ¢ . The lower halves show plots of & (the Eulerian
east-west velocity) as a function of X (the co-moving east-west
co-ordinate) along the labelled ¢ 1lines.

The displacements of a line of particles initially at A = o are shown in the
following figure.

34
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Fig. 8. "Spaghetti” diagram of particles under the passage of an isolated
ring.

There is also a trapped region of particles travelling with the eddy.

-stagnation point

trapped region Lagrangian center

~——— Eulerian center

For an oceanic eddy (c.f. Olson, 1980), consider the radially symmetric
velocity field
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The net eastward displacement as a function of y is

S“Q’n‘.";oy\ 'P‘» .

x Y

Then in this case, the trapped area as a function of t is: (Note: the area is
normalized by the area within the circle of maximum Eulerian velocity).

80 —p4——v—v——T TV TT T T T ¥ T T TV VT T

Fig. 9. Trapped area a(€ ) and also the latitude of the Lagrangian center.

There are two stagnation points in the flow (neither of which are the Eulerian center
for nonzero c) and as € —» 1 (from above) these stagnation points approach each other.
For warm core rings, € ~ 20 (at the surface) and the areac ~ #;and € decreases
with depth. Two possible vertical structures are possible: 1) the compensated case
where €20 as the bottom is approached and 2) a first mode solution for which there
can be a second deep trapped volume (not connected to the upper volume). Both trapped
regions look like skewed wine glasses.
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Fig. 10. Trapped regions for baroclinic eddies

The trapped volume for these two cases is
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Fig. 11. Trapped volume for Gulf Stream rings as a function of translation
speed (swirl speed = 90 cm/sec) or swirl speed (c = 5 cm/sec.).
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A more dynamical example is that of a vortex pair (modon).

Following similar arguments to those above, we can show that the net
displacement of a particle caused by the passage of the modon is prograde.

T i = S b G
= . 1t
go 1) L g 1) AS [ D S; ‘D

i

T, L z X DZ -
f‘“‘-‘—gl >(L§fdc >el > 8 2 54
T s ‘1““’— Tvo"b ) To T T,_l -

= d_ = -D+cT_2z20

\ ?J '

\ §

1 b {

The displacements are sketched in the second figure above. At first sight,
the prograde displacement seems puzzling since the streamfunction pattern
suggests that there is mainly retrograde flow north and south of the eddy.
However, we can show that particles initially in the two hatched areas are
moved to the right by the modon by considering the detailed form of the
solution. For constant f, \771# =0 outside the eddy

Y= cro(~2)>0

¢ cro (£ - ff)‘me
Inside Q¢ = —krd

b= A 3‘.(‘-&%)4«9

at r = ry match the two values of q6

’4/ - cre Ez— I(k%)/&ya(h) B ?’o] s;e

¢ - Cro 23, \"L”ro)/ﬁy k)
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Calculation of u = - 4’ shows that u » o in the cross-hatched areas.
Thus a particle even initiaily far north or south of the center of the track
feels u > O for substantial periods of time.

If the modon is on the ﬁ ~plane, however,

VU APy = FC4rey)

and the outside field is now @««K,({‘) sin O (Ky modified Bessel
function) and u = o when

Kile)
r/(o K},( (/ro )

sinZ ©

Thus the regions for which u > o are now more limited and one would find
retrograde displacements for particles set to the north or south of the eddy.

In summary, there is a net drift of particles whenever Tg = TL. For
oceanic or atmospheric flows with vorticity, Tj, can be larger or smaller than
Ty and a general formula is Gf, = 1 - Té/%;.
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TRACERS IN RINGS
Glenn Flierl

Introduction

The problem considered is the distribution of a tracer in the neighborhood
of strong, large scale vortices of the type found in the ocean and in
planetary atmospheres. The strongest examples of nearly geostrophically
balanced vortices in the ocean are rings which are eddy features formed from
meanders in western boundary current extensions such as the Gulf Stream or
Kuroshio. The intense cut-off highs and lows in the atmosphere are similar to
rings in some respects. The features of interest have length scales L ~ 100
km in the ocean and L A~ 1000 km in the atmosphere and have the distinguishing
property of remaining coherent for long periods of time (»~ 6 mos.-1 year,
ocean; ~ week or more for the atmosphere). These eddies are of particular
relevance to the systems in which they are found, due to their role as both a
mixing mechanism and their ability to trap fluid within their cores for long
periods of time.

A laboratory example of a strong, nonlinear vortex can be generated by
releasing a column of light fluid into an otherwise quiescent denser fluid on
a rotating table (Saunders, 1973; Griffiths and Linden, 1981). The result
after the geostrophic adjustment phase is a large vortex of upper layer fluid,
restrained by Coriolis forces from spreading rapidly into the final state of a
thin layer of lighter fluid spread uniformly on the surface of the lower
layer. The transition to this final state could occur by frictional breaking
of the geostrophic constraint; but it actually takes place much more rapidly.
Due to an insztability of the vortex (Griffiths and Linden, 1981) the vortex
edge breaks into sets of dipoles which carry fluid rapidly outward. This
transport, essentially similar to that described for the modons, accomplishes
the spin-up on a time scale much shorter than that due to interfacial friction.

Tracers in the Neighborhood of a Ring

The distribution of some tracer or concentration of a cloud of discrete
particles, S = S(x,y,t) released at some point Xo, ,o at t = 0 {s governed by
the advection-diffusion equation

?;S+§_PB_S__.)_;¢_3_S.=KV13 (1)
It X 33 D'J)X )
where ¢ is the streamfunction for the flow into which the tracer is released.
To describe the evolution of the distribution of S it is convenient to intro-

duce the moments of the distribution of S in space. Here the analysis will
include the first moment or center of mass

Fa—,Jh:J‘J,XS(X)té)":)dxd1 (2)
vz 7';:;[3 SUxytYdx dy,




and the second central moments

= : -
G E m, ﬂ(hj’/‘;’(”j P;)S(X,j,{)dxdj. 3
In these definitions M, {s the total mass of tracer

M= ([ st gty dedy,

Then as long as a finite set of moments exist (i.e., S(x,y,t) is bounded) the
time derivatives of the first moment are

iR S tr
+V = ‘;"1'0 IS ¢x C‘XJQ-

A simple example in which the evol:tion of this center of mass of a tracer
can be followed {s for a constant vorticity flow

é= ¢+Lx+c-a+d§z+ex-1 +f—3;.

The time rate of change of the first moments for this flow field is

(4)

pm=—(ctepm+fv)

V= (L"’ d/‘i ’f’e'l/).

Therefore the center of mass of an initial patch of tracer behaves just like
an advected particle in this flow. 1In general the situation is more
complicated such that it is not possible to express the movement of the center
of mass as a function of the streamfunction and first moments alone, i.e.

p#EFB v p),

Another tractable problem involves the behavior of simpler initial
distributions of tracer. For example, the distribution of sharply peaked
patches of tracer can be described for short periods of time following thelr
release. If the initial distribution is given by a delta function

Q(x,\y’o)‘-' Mo $(x-y,) S(j“ 9+) (5)

The short time evolution of S can be found for a general flow field, f .
For this case the temporal Sehavior of the center of mass can be expanded in a
Taylor series to give

pe-{buetzng 2 2 8,9




- 68 -

The evolution of the second central moments which describe the spreading of
the patch of tracer can be expanded in a similar way using this result

39, _
3¢ 2k -2{<, Tt ¢x; Y2 ¢,’}

90, _ G _ _
3¢ 3¢ - Tn Pk 05243'3

302 2% - 209 bex + %, B0,

Then since the second moments of the tracer cloud are small for the period
immediately following release, the expression for the time derivative of the
center of mass can be approximated by

p,_32{¢+v¢zkf?
V= {¢*V¢Z7('(}

Now consider a vortex which exhibits trapped regions as described in the
first lecture. Let the streamfunction in the translating coordinate system be

¢= f/(o(kr)'*Cg, 9)

(7

(8)

where K; is a modified Bessel function and ¢ is the phase speed for the
eddy. Following Eq.( 8) it is possible to write an effective streamfunction

of the form

A({: _E_"KD(AF)-‘*QJ"U(ok Ko(kr)z')({'. (10)

The influence of the diffusion introduces an effective opening up of the
streamlines in the proximity of the U, = ¢ saddle point as shown in sketch
below. Fluid will tend to enter the region which is trapped in the absence of
diffusion from the lower left quadrant in the figure. Diffusion also allows
tracer to leave the trapped region at the lower right edge of the vortex.
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The problem of the dispersion of a tracer in an eddy can also be done
numerically. The conservation equation (Eq. 1) is solved in a coordinate
system which 1s translating with the eddy. Sketches of the results for two
cases are shown below. In the first case the tracer is originally introduced
within the "trapped” region of the eddy. The effect of the diffusion is
basically that predicted by the small time expansion above with a plume of
tracer proceeding out of the vortex at the lower right. In the alternate case
where the tracer is originally distributed outside of the closed streamlines
the simulations show tracer diffusing into the ring in the southern portion of
the vortex again in agreement with the prediction of Eq.(10).

Mateyial oliffusinﬁ Matenal
ouT ,
from a rnvuj

IN

{
.\»

When the Peclét number is very large, the concentration of the tracer
becomes homogenized along streamlines (as in the Batchelor-Prandtl theorem)

k__ 100 kwy l

S=85 t
On the streamlines which expand to 1n£in1{y s i; determined by the far field
boundary conditions, in this case S = 0. However, the formalism of Young and
Rhines cannot be applied directly to this problem because of the stagnation
point existing in the flow. One might suspect that the exterior flow will
effectively maintain S = O at the boundary of the trapped region. A simple
analog problem then demonstrates that the tracer will decrease with a time
scale L2/ but exponentially rather than algebraically. Consider a field
with ¢= ﬁ(r) for all areas with S £ 0 and then two cases to demonstrate
the importance of conditions at the edge of the eddy. First consider

S= Tlkr)e ©° ran
LJ;('QPO)‘-‘ o]
S=o0 r>r,.

dlffusfnj
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corresponding to a situation where tracer 1s swept away to @® by a flow
outside of a region of closed streamline bound at r = r,, The decay of the
concentration at the eddy center is exponential in t!me. Alternately taking
the same {nitial condition in the case with continuous radially symmetric flow
out to infinity so that S—» 0 far away, a solution to Eq. 1 is

w -Xh't
S = Y ke go(h)t(kr)c{h/

which leads to a decrease in tracer at the eddy center
g (o)
SLo)'t)‘—‘ <
2Nt -

These two cases behave similarly for small t but there is a much faster long
time decay in the first situation where S = 0 at r = r,, The difference
rises from the nature of the outside ¢ and S fields.

Influence of Rings on Large Scale Property Distributions

In order to study the influence of the passage of strong solitary eddies
on the distribution of properties in a region the passage of successive
vortices through a channel is considered. The model problem consists of a
channel geometry as shown below across which a gradient in § is fmposed by
fixing S on the boundaries.

IV IO NENNYYY, ///Ll//[

1 @ ' .

5=0‘ oy //Tf/////f7/77/ r/7i777'777‘3 o
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This might be thought of as an analog to the passage of warm core rings
through the North American slope water. 1In the actual situation the lower
boundary becomes the Gulf Stream and the upper the continental shelf.

The problem to be solved is again the advection-diffusion equation
?
S, +eT(s)= §V'S (11)

where the scaling parameters are € = °/c and §= 75/ « The boundary
conditions imposed are

S= 0 aty =0
(12)
S=1atym=1
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The cross-channel flux per eddy cycle can be found by writing Eq. 11 in
flux form and integrating in x to give

¥ s
j:{-?( ?;a + a—t S}éx.

From the boundary conditions it can be shown that F, = 0. As long as the flow
satisfies the boundary condition 3"/3,{‘: O at y =0, 1,1t {s possible to
write a Nusselt number, Nu, for S as

/ (‘)‘1 7 o (13)

— Actual flux of S
— Diffusive flux of S

If an integration is done over a region bound by some streamline, % ,
and one of the walls, it is easily shown that

0 .'-( ¢° /s closed

fVSH:I'JL = Y3g (14)
¢° j'o 3_\:) Ax’-' XA/IA '/'or epen 40.

For the closed streamlines the Prandtl-Batchelor theorem holds (see Rhines
lectures) which follows from

vSs = 3¢v¢

which vanishes in the integral above only if %¢ O 1inside the region
bounded byﬂ, On open streamlines the tracer must obey

3S _ Y Nu
¢ j; [9gldL

From this result integrated from ¢ = 0 to ﬁ- -1 and the original definition
of the Nusselt number we find

lmml”

As an application the somewhat artificial case of square eddies 1s assumed.
While the eddy shape is clearly unphysical this makes the problem tractable.
Two cases are treated. One involves an eddy whose velocity maximum occurs at
the channel walls (y = 0, 1). The second case treats an eddy whose velocity
maxima occur witl.n the channel. The problem geometry (page 72) 2lon« with the

resulting S fields (page 73) is shown in the following diagram.

(15)
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Y Conroves —— b= 1P+<J Conmurs . o -
Case A

|
Y=o —
Xz o Xz ) X» ¥
ZA4Ase B
 ER|
y:i-48
YA
Y:o
Xz 3 x:1-2 & Xz ¥

In the situation where the eddy fills the channel the gradient in § outside
the eddy is uniform. A very rapid flux of tracer occurs at the walls where
the eddy is in contact for this case. 1In case II the gradients in tracer are
concentrated in boundary layers along the walls while the interior of the

channel is nearly uniform.

The Nusselt number for the flow field increases in both cases as the eddy
steepness, € , increases from small values. In the case where the eddy only
occupies a portion of the channel the Nusselt number becomes constant at some
value of € and above. This arises due to a diffusive limitation for the
flux in the boundary layers. In the situation where the eddy is in contact
with the walls there 18 no such limitation and Nu increases with increased & .

The dependenceof Nu on the nonlinearity, € , is shown graphically for the

two cases below.

loo b

N“ /0 b .’ case E
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The increased efficiency of the tracer transfer across the channel is given by

Keff =X Nu( € )
for both cases. For realistic parameter values Nu -~ 4-6 so that very little
enhancement to the cross-stream flux actually occurs.

It is also possible to treat the down-channel flux associated with the
translation of eddies. Here the boundary condition imposed at the walls would
be S = S(x) in general. The simplest case is just

S=xon y =0,l.
The down.channel flux in the absence of any eddies is then just -8 . The eddy
passages can be looked upon as discrete jumps of fluid with the Lagrangian :
displacement profile discussed in the previous lecture. Schematically the j
problem appears as follows.

e« b

The problem to be solved then becomes

T3 2
UL(y)sx =8 V" s.
Since the concentration minus x, S—-x, is periodic a solution can be written
s = x+ 3(y).

The problem then rcduces to an equation for 8§ of the form

§Syy = UL(Y)

A
with S = 0 at y = 0,1. A Nusselt number for the flow can be written as before
which gives

{
A
Nu =1 + jo(sy)Zdy’

2
in which the last term is proportional to § ". The effective diffusivity is
then

Keff L K-l

in the downechannel direction. There is then an asymmetry in the effective
diffusivity due to the eddies in the two directions with

XK
Keff >> Ke"f’f-

‘ ' ~—1-n-Illllll-nn---n--udjl
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For small diffusivities the eddies produce a more efficient flux of material
in the downechannel direction than in the cross—channel.
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EQUILIBRIUM STATISTICAL MECHANICS APPLIED TO
GEOPHYSICAL FLUID DYNAMICS

Rick Salmon

I. PHILOSOPHY AND REVIEW OF THE BASICS

Introduction.

This 1s an old subject (due mainly to Maxwell, Boltzmann, and Gibbs). The
new idea 1s that equilibrium statistical mechanics gives useful insights into
the behavior of realistic, non-equilibrium fluid motion. The pioneering
papers on the application of equilibrium statistical mechanics to classical
fluids are:

Burgers, Verhandl. Konikl. Akad. Wetenshap, Amsterdam (1929)
Onsager, Suppl. Nuovo Cemento 6, 279 (1949)

Hopf, J. Rational Mechanics 1, 87 (1952)

Lee, Q. Appl. Math., 10, 69 (1952).

These lectures will review the basics of statistical mechanics, emphasizing
the differences between the fluid continuum and the conventional molecular

gas. Our examples will be drawn from GFD.

Equations of Motion

Consider a system with N (real) degrees of freedom (y1,» Y2seeee,Yn)
whose evolution in time is governed by N first-order equatiocns,
[ 4

Yoz Gy k), o=, N w

For example, a two-—dimensional inviscid flow within a closed curve C; . The
stream function Y/ obeys the equation,
] . s

LNV T4 0. Pl o & 2)

At
Expand Vo= § gv{t> & (N (3)
c Tk, 7

.

in che eigenfunctions,

VL(Q t f'(f(Q =C

, (_P‘-:(J on C, (“_(F} 'S).,J‘.

(Here the overbar denotes an areal average over the flow). The transform of
(2) 1is

7. =AYt (4)
where ' ' _
Acie = (R /n k) € T(¢,,¢)

The N-dimensional space spanned by (y),...,yN) is called phase space. Each
state of the system corresponds to a point in phase space. The evolution of
the system is represented by a trajectory in phase space. Let P(y, t) be the
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density of systems in phase space. Pég, t) has two interpretations: (1) If
there is only one system, then P is 1t% probability density. (2) If there are
many identical systems evolving at once, then P is their number density in
phase space.

For either interpretation, P obeys

| L. (Pyg) =0 (5)
! =or 2 Dy 7,
which is the analog of the continuity equation,
ﬁff\/'(Fu,BiO (6)
,)t ~ ¢

for a fluid. Liouville's theorem states that if ;1 Aéﬁ,ﬂ)yt =0 , then
the phase flow is nondivergent and -

C. 7
D t -y D%ﬂ» @

This is the analogue of D,/Dt=0 for 1ncompressib1e fluid motion. Equation (7)
is equivalent to the statement that in the coordinates ¥Yi, the elements of
phase fluid preserve their volume. Canonical coordinates automatically
satisfy the Liovville condition, but so too do many noncanonical coordinates.
The coordinates introduced above for the two-dimensional fluid are
noncanonical, but they satisfy (7) because Aijl vanishes whenever two of its
indices are equal.

The evolution of turbulent fluid is highly sensitive to initial
conditions. Thus, an initially compact blob of phase fluid (representing a
tiny uncertainty in the initial state) evolves so that phase particles which
were initially close together become widely separated after finite time. The
phase blob “"fills" an increasing volume of phase space, even though its own
volume is conserved (Fig. 1). This behavior is called "mixing"”. The phase
blob cannot, however, mix through all of phase space since it is constrained
by the conservation of energy (enstrophy, etc.) to energy hypersurfaces.

A

Let P be a smoothed or coarse-grained probability density which is
constant over the volume of phase space "filled” by P. P has a simpler form
than P, but can be used instead of P to compute averages

<Ry = STy, Fly)P

for any function Ry) that depends smoothly on d. The essence of statistical
mechanics (whether equilibrium or nonequilibrium) is to get $ without first
finding P. This obviously requires auxiliary principles or assumptions.

Equilibrium statigstical mechanics assumes that 3 is uniform on the
intersection of hypersurfaces corresponding to a set of known invariants of
the motion. Examples:

A
3-d turbulence, energy conserved, P o S (E-E,)

A -~
2-d turbulence, energy and enstrophy conserved, P o S(E-Eo) A(Z- 7;0)

e hirtan b 1 2t el v, o son e
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Where has the Liouville property been used? Observe:

1) Even if P is uniform in one set of phase coordinates, it will not
generally be uniform in another arbitrarily selected set.

2) Any two sets having the Liouville property have a constant Jacobian of
transformation.

3) The Liouville property guarantees consistency for the same set of
coordinates for all time.

Gibbs Viewpoint.

Gibbs was unconcerned with the evolution of a phase space blob and hence
did not distinguish between the space-filling exact distribution and its
smoothed counterpart. He noticed that if E was a constant of motion, so
that JE/4t=> O , then P = F(E) was a steady solution to Liouville's
equation. He introduced the

microcanonical ensemble P o S(B-E,)
and

macrocanonical ensemble P exp (-« E) as important examples of F.
The connection between the two was clarified by Khinchin, who showed that the

probability density for a subset (g\,,..‘ ,yu) of the N coordinates took the
form

P(¥n~“)y%3 - C ff“f»;%'f"ayy S(E‘Ee>

—> C'exp (~xEm)

as M/N —s 0, where E; 1{g the energy of the subset. The macrocanonical
ensemble is therefore appropriate for a system in contact with an infinite
reservoir.

Information Theory Viewpoint

This 1s an alternate, more flexjible approach which emphasizes the guessing
nature of the whole subject. Now, P represents our state of knowledge about
the system, and the entropy S[?] measures the uncertainty in precise system
state. Example: A random variable has precisely N possible values. Let py,
i=1,...N be the probability of each value. If

(#,%,...,0)= (0,...,0,1,0,...,0)

bl

S should be minimal, but if

i L
('P\)'Pz,-") /th): (_i/—)’—lil))_l\—l)
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S should be maximal.

There are many choices for the functional § [f’] which have these properties
(e.g. S = -2 P," ). However, only the choice

Q= - Z’R'L’LPV
&

also has the following desirable property: If A and B are independent random
variables, and AB is the composite random variable consisting of a realization
of A followed by a realization of B, then

Sap = Sa + Sy,
(Let pjj = probability that A = aj and B = bj. By independence,
Pij=pPipPj° Thus

S;‘B: - :S;J P;JWPLJ' = —LZP“C/NPV —J;_f)‘.(‘.7\»t)d, = St‘\ + SB s )

For a random variable y taking continuous values, the entropy generalizes to
S= - pints —> - Siy Pg) i piy) M)

where M(y) is an undetermined measure. If y has the Liouville property, then
M(y) must be constant.

The basic strategy is to maximize S subject to constraints which represent
the state of knowledge about the system.

Example: Two-dimensional Turbulence

The previously defined y;(t) satisfy the Liovville condition. Maximize
. = , : .
z - Sy .gzrt‘](ﬂ '(yl,“ )JN)IA"’ P(yl)")04N>

subject to

known energy < 2 ‘yf > = £, (8)
known enstrophy < S kiy? > = Z,
normalization L‘<’ 1 > = fS. . JS p'ﬂ"dy - 1

Using the technique of Lagrange multipliers,

Pch“xfp[-_—o((:-bAl',_f (9)
where C, o ,JA are determined from (8).

From (9) it follows that

KEY = <Yy = 3 [(atdkr)
kI3 k(43,2

(10)
and, of course

{Z,7 (11)
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and the quantity =»¢ "l‘ is equipartitioned among the modes in
equilibrium. The quantities :x and o' play the role of inverse
temperatures. Suppose that the wavenumbers ki are dense enough so that k
can be treated as a continuous variable. Then in two dimensions we have the
equilibrium wavenumber spectrum,

LK) € K/ (ot d“<f) (12)

Note that Ec"fi-(k)dN diverges logarithmically as k —> X' . The
divergence of the total enstrophy 7. JKR!L(/)dk is even worse. These
equilibria are therefore attainable only if the system is artifically
restricted to a finite number of modes, as if all k except fi iz<h were

() [
excluded from the dynamics.

For such a case, suppose that 2o k,l&c » as 1f all the energy
were initially dumped into wavenumbers near kj. The equilibrium E(k) is
determined by E,, ko, k1, ke threagh (12). Let k?= .¢/»" . The
fcllowing behaviors are found: <

A

Fo) | .; \

T S )

kK] far from ko, ke

. <, Ny oo
Re k“ k‘ Ry
N
u_is v k~1
behavior ki - » k§
( x<o, ¥~2¢ )
> enstrophy equipartition
L k‘ ke

ki ——> kg
(x>0, &v0)
energy equipartition

-
ko R‘ k(.
To see how these states could anticipate nonequilibrium trends, imagin: that

ke 18 raised by finite increments, with the system allowed to equilibrate
bctween each adjustment. That is, let k; —> O  with kg, Eo, 2, (and
hence k;) fixed. Carrying out the algebra gives the results (Kraichnan

1975), 7 ,
A~ k;’/ZO , it ke~ k’;@M’L‘ f\'cz/k‘L]
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Thus as k., —>-<> npearly all of the enstrophy is found near k., but signi-
ficant energy remains trapped at k,. This thought experiment anticipates

that enstrophy is transferred to ever-higher wavenumbers (and energy to lower)
by the nonlinear terms in the equations of motion. This qualitative behavior
could also be predicted by arguments which make no reference to inviscid
equilibrium ensembles. Interestingly, however, all of these arguments require
some form of statistical average. Without averaging, the time-reversibility
of inviscid rechanics provides a counter-example for every example.

time to time ty

Fig. 1. Mixing in a two-dimensional phase space.
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I1. ROTATING FLOW OVER TOPOGRAPHY

In absolute equilibrium, only the total energy and enstrophy are known.
Suppose instead that at some time t, the energy spectrum is assumed to be
known. What is the entropy associated with this Eimpreclse) state of
knowledge? Now we maximize S subject to the many coustraints,

SYv=ES ) wll ¢ (13)
finding that
P=Cexp-2 jbl] (14)
with
X, = //J_ l':f (15)

Substituting (14) into the expression for S, viz
\S = - M S TFA«/. Pen PP (16)
.
and performing the integration, we get

.“

Sz 2 dw E° a7

(to within additive and multiplicative constants.) Thus (17) is the entropy
associated with the energy spectrum {E;° }o The equilibrium spectrum can be
formed by maximizing (17) subject to total energy and enstrophy conservation.

Carnevale (1982) has studied numerical simulations of inviscid two-dimen-
sional turbulence on a 256 x 256 periodic grid. The experiments (figure. 2-5)
confirm that the entropy (17) increases monotonically as the equilibrium
spectrum is approached. A well-known group of turbulence closure models
provides closed evolution equations for the single-time spectrum {E;: }.
Interestingly, and I would say necessarily, these closure equations are
consistent with the "H-theorem”,

dS/dt 20

where S 18 given by (17) (Carnevale et al, 1981).

Why are energy and enstrophy so important when inviscid two~dimengional
flow actually conserves an infinite number of integral invariants (V2y)n,
where n ia any number? One answer is that only the enstrophy (n=2) survives
the truncation in modes. A more satisfactory answer is that the contours of
the higher (n> 2) {nvariants are "gpace-filling" on the energy-enstrophy
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Fig. 2. Randomly generated initial spectrum to test the approach
to equilibrium of inviscid numerical simulations of
two-dimensional turbulence.
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Fig. 3. Energy spectrum after t = .l turn-overs. The theoretical
equilibrium spectrum is dashed.
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Fig. 5. Entropy evolution in the experiment shown
(Courtesy of G. Carnevale.)
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i hypersurface. Kells and Orszag (1978) have studied the inviscid evolution of

T low-order systems, in vhich the existence of these extra invariants (and )
perhaps others) is most likely to cause nonergodic behavior. They find that
the macro—canonical ensemble is correct for as few as N~ 20 modes. i

Now consider the more geophysically relevant case of one~layer quasi-geo-

strophic flow over topography. Let H be the fluid depth, L the horizontal
length scale, and R, the Rossby number. If efther

(Hy )<< 1 or Ro(H/L) %< 1

then the fluid motion is hydrostatic and columnar, and potential vorticity is

conserved:
L ( St f ) =0 (18)
Dt +
Here, j' is the relative vorticity and gc the Coriolis parameter. If,
moreover,

Ro<< 1 4,/_;,« 1, Afce 1

then (18) is well approximated by the quasi-geostrophic equation,

?fo+3’(‘~#,f6)=o_, G: vt h, A= Fed, d=L(F-H) a9
o

where V’ is the streamfunction and q the potential vorticity. Expand ‘/‘
and h in the previously defined eigenfunctions (€ (x),
L~

Ve 5 YOG (x) k= A Ex).
¢ /R." c

The invariants are
energy E= 2 y‘;z.
(%

and

) , )
potential enstrophy Z = 4,2 (/?,, A 2k, A..f.,

(less a constant)

By the same methods as before, we find that ,

. (L.f.
! <y°7 = 9 k;“u ) <'\;j"z D =<y‘;>14 __\_—— (20)
L4 k2 ,Z(o(fa'/zb‘)
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where « and J' are the Lagrange multipliers corresponding to energy and
potential enstrophy. The mean streamfunction is an energy-weighted version of
the topography. In typical cases J'>0, and we have anticyclonic flow over
seamounts. The topography offers the fluid a way to sneak more energy into
high wavenumbers: Positive correlation between V¥ and h preserves Z despite
the increase in 2 &4y < .+ States with d € correspond to initial energy
sharply concentrated near k.. For these more artificial states, the spread

of energy into other wavenumbers forces a negative correlation between ¥ and
h to conserve 2.

Holloway (1976) compared numerical solutions to the equations of motion
for the following 3 interesting cases:

2 2
) no topography v y’g +J( “f} Y ¥)=0.
energy and enstrophy conserved
no mean flow

b} 1 s -
(11) topography and nonlinearity v Yt + J_("f; vivsh) =
energy and potential enstrophy conserved
mean flow locked to the topography
topographic enhancement of the wavenumber spectrum

(111) no nonlinearity S l"}’é + Ty R :=cC
energy and ¥4 conserved !
no mean flow (if VA is initially zero)
energy equipartition in equilibrium

The results are show in figure 6.

If the topography has coherent form (as if d=o0 so that h=f), then the
transforms of (20) are useful. These are

Vikv> + A = (§')<V> (21)
and

17‘(J‘Vl—d)<5"('1{)‘/’(5¢)>=J‘Q~10) (22)
wvhere / .

wlx) 2z ¥(x) - <Hx)>.

To obtain the latter, remember that

i. du(:)(ﬁg(?.‘.:) = J(}f_-\:.)

An interesting special case is beta-plane flow in a rectangular ocean.
The mean flow equation,
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Fig. 6.

Enstrophy spectra of two-dimensional turbulence over topography
after 2.5 turn-overs beginning from a narrow spectral peak.
three experiments correspond to no topography (long dashes),

topography and nonlinearity of equal strength (solid), and no
nonlinearity (short dashes).

(Courtesy of G. Holloway.)

The

The topography spectrum is hatched.




VNS> » Bly-y,) = L <7 (23)

1s the same equation considered by Fofonoff (1954). The constant y, can be
considered the Lagrange multiplier corresponding to a third possible integral
invariant, the mean potential vorticity. If the energy constraint is dropped
("= 0), then the mean potential vorticity is uniform, but the equilibrium
energy is unrealistically large (Rossby number order one). For realistically
small initial energy, A = (/x)%1s much smaller than the ocean basin size,
and inertial boundary layers of thickness { close a uniform westward
interior flow. These results suggest that energy conservation is a strong
constraint on the spatial mixing of potential vorticity.

It is important to realize that the eigenfunction expansions are purely a
device for avoiding functional methods. Our development has followed the
solid arrows in the diagram below, but the dashed arrow is a possible
alternate path.

Fourier Space Physical Space
(T. D. Lee) (E. Hopf)

Fourier space — Fourier Physical space
phase coordinates ~ transform phase coordinates
|
|
)
1
\'d
Statistical Equilibrium Inverse ~, Statistical

in terms of Fourier components transform ~ Equilibrium in terms
of physical variables

To follow the dashed arrow for the case of two-dimensional turbulence, let
the phase coordinates be the values of ¥ at horizontal grid-points with
spacing & . Replace the equations of motion with finite-difference
approximations which become exact as A > O . Verify the Liouville
property for the phase coordinates, construct the canonical ensemble, and
write the equations for the mean and covariance. As & > O , these equations
become identical to (21) and (22). The details are straightforward.
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III. STRATIFIED FLOW AND THE EQUATORIAL FUNNELING EFFECT

Now consider the rotating flow of two {mmiscible layers of different
constant densities between rigid horizontal planes. The quasi-geostrophic
equations for potential vorticity conservation take the forms,

g__%i + T, %) =0 (1=1  top layer

(i=2 bottom iayer

where % = Vz\}" t F(“h_’ q/‘)
2, = Vi, + Fld-¥)
F-5%/3'n = kE/2.
For convenience, the average depth of either layer is assumed to be H. g’

the reduced gravity and k,{’ the internal deformation radius. The quadratic
integral invariants of the motion are:

total energy € = VY-V + V¢ VY + R (-4
p

consisting of the kinetic energy in the top and bottom layers, and the
available potential energy associated with displacements of the interface
between layers; and

m———

B
2.

potential enstrophies z, = Z:' ) %?_

It is convenient to adopt the modal variables,
CEED,

1}
barotropic v 3
baroclinic T = -;: (q‘ - 4,7}

Expand ‘P and T in spatial Fourier series. The phase coordinates are the
real and imaginary parts of ‘/’h and T’k . Define,
(o]

U(E) = kz \\{/h\:" (barotropic energy in k)

E( '3) - (kz* k:) \,[_k\ 2 (total baroclinic energy).

is
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The invariants can now be written,

e- 2 Zlutn - e
(2+2) = 2Z LIVl + (R kD ER]

(2,-2) = 42 R'(R%R2) ¥, ”r

Suppose (for simplicity) that the layers are statistically symmetric such
that <I¥4l2> = <1W,4|*> initially, and thus for all time. It
follows that Real ( Yo T ) = 0 so that Z‘—E,_ = 0. Then the only
equilibrium constraints ate £and Z,+ T, conserved. The modes enter the
expressions for energy and sum-enstrophy precisely as in two-dimensional
turbulence, except that the baroclinic mode has effective squared wavenumber
(k2 + Ry ). The inviscid equilibrium states thus turn out to be

URY = 1/ (o + ¥ k)
and ECRY = /(o3 ik,

In all cases of interest (initial energy not concentrated too near the upper
cutoff ko) U (k) decreases with increasing k for all k. Then E(k) << U(k)

for all k<<kyg and the equilibrium flow 18 nearly barotropic on scales
larger than the deformation radius. This 1s the “end state” of baroclinic
instability. Figure 7 shows the correlation coefficient between the layers in
an inviscid numerical simulation of two-layer flow. The layers were initially
uncorrelated. After 500 days the measured coorelation coefficient (solid)
closely resembles that predicted by the theory (dashed).

The generalization to an N-layer fluid i1s straightforward. The energy and
sumeenstrophy take the forms

2r Z{EMD v B v B o]

and

ZAV& = %{ ‘QLE‘,O}) + (klrk‘l)t:.(ti) + (kY h:)EL(Eyf. %

where Bn(P 18 the energy in horizontal wavenumber k and vertical mode n,
and is the n-th internal deformation radius. Note kj = kgr. In

Pt} " . et s -
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uniformly stratified flow, ‘;\’n = nil f’ // ‘)1 H ,
1.0 |~
\
\
S 75t /‘\\\
L
g | I
= \
Lt .5 = \
O
O
= i
o s N\
= .25 |
<t
o -
g O 1 1A 1 i \‘1
o (0 20 40
S |
sl WAVENUMBER

Fig. 7. The correlation coefficient between layers in an
inviscid simulation of two layer flow.

where‘?l is the Vaisala frequency and H the total depth. We expect net energy
transfer into modes (E, n) with lower total wavenumbers k2 + hhf « But

k, increases with n. This may explain why nonequatorial geostrophic motions
show little energy in high vertical modes.

Now consider what happens as k, varies with latitude through its depen-
dence on f. As the equator is approached, the k, vanish, removing the
inhibition against high vertical mode numbers. Moreover, since the total wave-
number k2 + knz' of each mode (k, n) is smaller than its value at higher
latitudes, the total energy should increase toward the equator. Thus a uni-
formly excited ocean would transfer energy equatorward and into high vertical
mode. Observations seem to support this idea (Luyten and Swallow, 1976).




To calculate the inviscid equilibrium states with variable coriolis
parameter f(y) and Vaisala frequency ‘71('&), we adopt the quasi-geostrophic
dynamics,
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L4 T4y =C

ER

¢ = XLyl v $iy) (24)

A

- - S G R 1
ey 2 2"
XL+l = viy + Sz ’_ EER N
with boundary conditions 3, 2 =0 ﬂf’i:(g-lt.

The invariants of the motion are the total energy,
E = - J§Sdxagde ¥ XLw ]
and the potential enstrophy at every level,
Q) = Mdedy (xLvgof)e ) ail «
In equilibrium,

P AL exp [ -« L“'-,fa\('z).x‘k(z)da_( (25)

and integrations of (25) yield the analogs of (21)and (22), viz

(Y0 §)<u> <> e

and
2 X [_a‘u‘(»agl Rix x ) S(x x_) 27

where

Rix,xo) = < MOV (HH>

Equation (27) suggests that the fluctuations will be strongest where the
"vertical diffusion coefficient” §*/91%* 1is the smallest.

Now specialize to an equatorial channel ~L<Y<*L with periodic end
conditions on x, f = ,3% and *?{ = constant. It can be shown that, on
account of the channel geometry,

2 (SSdxdy FX¥) =0 (28)

If the integral in (28) is initially zero, then the enstrophy invariant can be
reduced to

Q) 5 Sdady (XUvD)7, (29)
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and there is no equilibrium mean flow. Suppose also that 54(%) has no &
dependence. These conditions are met if the initial flow is uncorrelated with
latitude and if the initial energy density is invariant with depth. The
resulting equilibrium displays the “"equatorial funneling effect” in its
simplest form.

Expand the streamfunction Y’ into vertical modes.
20 A _
Yix,y &) = é%o % (x,y) cos (sTTz/H) (30)
By the foregoing assumptions,

. A -
< V:\) (.)(, .'4) \/E (X' ‘3\ > RS(\(’ tg ; x"/ gé‘> ng\u

= ) (31)
and (27) implies thatA
&’({—‘/3!‘) R, = 7 3(x-%x) (32)
where f 2 N .
7 ()T (59 - RI(y)
and ) s 2
kle siMpeyr o L ()
N*H* oo

V; is the s-th internal deformation radius. For S =0 (the barotropic mode),

ko = 0 and > , o i
Vv ) Ry - g 50

is the same as for two~dimensional turbulence. The equilibrium spectrum for
the barotropic mode thus takes the form

Eo(’:‘f) { R/(x+8k*)
2 €
which is a maximum at k= (°9/5 ) =0 /l_) . We therefore anticipate

that
<t°€/\rw>‘/z < < ‘//}; .{%Ji‘ AY >'C7)

i.e., that the internal deformation radii are smaller than the basin size.
Then for $»>0 (32) is well approximated by

AN A (
XX R, = 73 §0x-%0) (33)

Equation (33) has a similarity solution of the form
A — o
Rs = rL (X , %o \ (34)
- ' -7y " v
pIR'S (AN CADN N




where

does not involve s. We can therefore deduce the following two important facts
without explicitly solving (33).

(1) The latitudinal width of the equatorial energy peak of the s-th vertical
mode 'is (V; L )V‘ = the equatorial deformation radius for mode s.

(2) The average kinetic energy in mode s, at the equator, is

5 N BN i B ) N
<Vk{$'\’k"s>‘~_;. - \5 ‘.'.‘g R y o
By (34) this is independent of s. Thus all vertical modes have the same
equilibrium kinetic energy at the equator.

We can make further deductions about the solutions of (33) by WKB
reasoning. For fy( > (v ¢ )7? can be replaced by
. > 4 )

\

2o (3003 k).

S

Then (33) is identical to the equation of internal modes with constant f. The
equilibrium spectra are

R 1) = s

S e
Decompose the potential enstrophy invariant (29):

S = | > gf_s(ﬂ\l\%

>

into contributions ;:Zs(ﬂ> from mode s and latitude y. Then since

() = (RS R E (R, ) dR,

it follows from (36) that _51“;()j) is independent of both s and y in
equilibrium. The enstrophy invariant is thus equipartitioned among the
vertical modes and latitudes.

Figures 8-10 show results from a direct numerical simulation with a
6-layer quasi-geostrophic model in the equatorial channel. The initial
conditions are random, with kinetic energy equally divided between the
barotropic and first baroclinic modes. All higher modes have infinitesimal
initial energy. There is no forcing or viscosity. The internal modes
quickly develop equatorial energy peaks of the expected widths (figures 8,9)
and the quantity .fLs(}4) tends toward uniformity in s and y (figure 10).
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Remarks:
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(1) Linear equatorial waves couple the different latitudes and can
participate in equilibration. However, waves cannot explain the
equipartition between vertical modes, because the latter are decoupled by
linearfzation.

(2) The present theory predicts a spontaneous concentration of energy on
the equator. Once there, the energy can be 'wave-like', i.e. it can be
concentrated near the linear dispersion curves, but this in no way
invalidates the explanations offered here.

(3) Quasi-geostrophic dynamics are invalid near the equator, so my

results must be regarded as tentative. However, the solutions for large y
should be correct, and they have interesting consequences.
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WAVE-MEAN FLOW INTERACTIONS - WITH APPLICATIONS TO THE MIDDLE ATMOSPHERE
| David Andrews
I INTRODUCTION

This subject treats both the influence of the mean flow on wave propaga-
tion, and the nonlinear effects by which waves alter the mean flow. Clear
examples of these processes occur in the stratosphere and mesosphere.

The first problem is how to define the mean flow and the waves. Meteor-
ologists typically employ a zonal Eulerian average for the mean, but a
Lagrangian average may be more appropriate for many problems. In any case,
the disturbance or wave is defined as the departure from the mean.

In idealized examples, the waves are of small amplitude. One obtains the
linear wave solutions, correct to first order in the amplitude, then examines
the second order effects of the waves on the mean flow.

Three different situations will be considered: the interaction of two-
dimensional internal gravity waves with a mean flow, U(z); the propagation of
Rossby waves in a quasi-geostrophic system with application to stratospheric
sudden warmings; and the transport of tracers in the stratosphere. The latter
two examples will be treated with the transformed Eulerian-mean equations.
This system is similar to the equations of the Lagrangian mean, but is easier
to apply to meteorological situations.

Two kinds of theorems are relevant to the solutions of these problems. L
"Non-acceleration” or "non-interaction” theorems state that small amplitude
waves alter the mean flow only in the presence of wave transience, wave
forcing or wave dissipation.

Generalized Eliassen-Palm theorems (Eliassen and Palm, 1961) are conserva-
tion laws of the form

§+V-£=P

where A 1s a wave activity, F is a flux (the Eliassen-Palm flux) and D repre-
sents forcing or dissipation. A, F, and D are averaged quantities, second
order in the wave amplitude, which describe the propagation of waves through
mean flows. They are useful diagnostics for such phenomena as stratospheric
warmings. The wave activity is conservative, 1f D = 0, unlike wave energy
which need not be conserved.

The transformed Eulerian mean formulation may be applied to the transport
of tracers. In two-dimensional models of the middle atmosphere it is
necessary to parameterize the effects of waves.

All these topics are included in the theory of the generalized Lagrangian
mean. A Lagrangian mean is a time average following a particle. In the
generalized theory this concept is extended to zonal averages. At least
formally the theory is valid for finite amplitude disturbances, but in f

- —— - {' “I--A,illlv ‘
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practice it can be difficult or impossible to apply. The practical difficul-
ties arise from the fact that definitions of particle displacements about
their mean positions are required. The theory does, however, simplify the
proofs of the non-acceleration and Eliassen-Palm theorems.

II. SECOND ORDER MEAN FLOW INDUCED BY INTERNAL GRAVITY WAVES

The equations of motion for a two-dimensional, inviscid, adiabatic,
Boussinesq fluid in the x-z plane are

W
z—{,‘wfo B~ p-0=0
.%;Z’chﬁN,:LCD Uy + W3 = &

where 8 1is the perturbation buoyancy, and NZ, the Brunt-Vaisala frequency
squared, is a specified function of z.

We consider an initial value problem in which the fluid is at rest for
t € 0. At t=0 a moving corrugated lower boundary is turned on, with the
height of the lower boundary given by
z = h(x,t) = 0(a)
where a is assumed to be small. The corrugated boundary moves in the positive
% direction at a constant speed, c.

We expect that internal waves will propagate away from the boundary,
filling the region up to a height
z"cgt

Whe;edcg is the vertical group velocity. Above z the fluid will be undis-
turbed. '

z

We will use a WKB, multiple scale approach to obtain the first order
linearized wave solution, and then show how this wave solution affects the
mean flow at second order.

The full boundary conditions are,
9
at z = h W= (§E'+ L‘i%i) h
and ag z ~»od the disturbance ~%» O for finite t. The domain is assumed to

be either infinite or periodic in x, and the averaging operation (— ) = (T )"
1s an average over a wavelength. Also, we chose h = O.

il
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The Linearized Problem

Expand each variable into its mean and disturbance contributions, 1.e.

u=u-+u' u' = 0(a)
u = 0(a2)
Then the linearized equations are
’ / ’ / ’ -
LA‘: + 11‘ = 0 bf% + 1Dz -0 = O
’ U‘ + ' = O (1)
O +N'w = O x+twWy =
And the linearized boundary conditions are
P' —»0asz—» o0 for finite t
(2)

w'=h atz =0

In order to avoid generating transients, the boundary forcing is turned on
slowly. A sinusoidal variation is chosen for the boundary. Thus

h' = aG(T)elk (x~ct) 4 O(apm ) (3)

where T is a “"slow" timescale

T -/ptt
with << 1. So G(T) is a slow modulation of the boundary forcing. The
O(Q/u) corrections are small and will not be needed explicitly.

To T
G(T) is chosen to behave as shown. T, ig the value of T at which G(T)
reaches 1, where

To . o(}—:‘ﬁ) » & awd wsek,

M
Thus the operator %( )‘ - (:UJ*/A%’)( )‘

To leading order in 4" the lower boundary condition is

\ -ct
w'z-ijwa Gem‘ )+ O(pe) ot z=0 (4)

2
Now we take N” to be constant and look for solutions of the form

3} ei(lu +mz-wt)

A

fuiw! p. 0’} = £3,&, 3,
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where m 1s the vertical wavenumber and the hat variables are functions of T
and Z, where Z i{s a 'slow” height.

Z =1/A Z.

1-e., A A
u=u(T,2) + 0(a)

At first order in the wave amplitude we obtain

. 1
A sk A A- A~ * - .N L -~
weogme o, pEeuw , 0= 5w (3)
with the dispersion relation
LL
1._ ” k ‘- LINL-kt
W = Ll-fm\' or ‘M - wl (6)
and the vertical group velocity is given by
e -mw?
DM T ~1k‘- (7)

The wave energy density, E, can be used to show that m <€ 0. A wave
energy equation can be derived from the linearized equations of motion (1),

2E L 2o
2 Tazlpw) =0

(8)
where the wave energy, E, 1s given by
Arr
- XX, T, O *
E-?[crr"“"’—,u’r] 4o o(a*) )

In a shear flow there would be additional terms on the r.h.s. of equation
(8). Using equation (5) the wave energy density may be expressed in terms of {

’

YR N
E-= f‘__“_ ,“'"
T 2miar 1Y (10a)
and the wave energy flux
w—— A
-t +
= 3= (4] (10b)

- -mw’E
: SiEe
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The wave momentum flux is
T o an
(V3 = .
N2k

and the wave buoyancy flux 1s

@' = O (/ua‘)
Substituting (10) into (8), and using (7) we obtain

¥ - 2020 -

Lo
Since EL- is constant, and E is a function of the slow variables only (to

0(32))
2E PwlvE .
€ ¢ (3205 - ogun
This has solutions

E-= E(T Cw (13)

Using the lower boundary condition (4), and equation (10a) we have
1L Z\1*
E = tN'a [G("f'- ‘g;;)] (14)

where the group velocity, cg, is now by definition

Vv

c8 = ;blvV\

Note that the solution (14) automatically satisfies the condition at z —» oo ,
provided we choose m < 0 so that c, » 0. - The vertical distribution of
wave energy described by (14) is simply G(T)Z turned on its side

¢}
Z

N
Ne

Now consider the induced 0(a2) Eulerian mean flow.
The boundary condition to 0(a2) is

W+ hyy = wh, « 2:=0

using the Taylor expansion w(h) = w(0) + hw,(0) +...Recall that to 0 0(a) the
boundary condition was evaluated at z = 0. But u'Ex = (=:;§i - hux
-

.
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implies that w = -h(uy + wz ) = 0 by continuity.

This is not generally the case, however. For example, in a rotating fluid
one needs to allow for a third spatial dimension, in which case the boundary
condition becomes

o = —kw'z' +u'|\-,,"V'L\1 - v'l\1 at 2=

But z = 0 will 1ie above the physical boundary in the troughs, and if there
were a tendency for the disturbance velocity to be one way along troughs and
another along ridges in the boundary, then W % O ; this would be associated
with a vertical mass flux into or out of the trough region. However, the
Lagrangian-mean Ir"’-—o at z = 0, so in this sense the Lagrangian-mean descrip-
tion is simpler than the Eulerian-mean one.

The horizontal momentum equation
Du

Pt + Py z

-G, e o) for 2k,

Similarly, the thermal and vertical momentum equations respectively lead to

(15a)

6, = -(e'w’), (15b)
#2-0 = - (w'?), (15¢)
Equation (7), together with (11) imply that « W’ "! —(Z T) , 8O one

looks for solutions of the form u = u(Z T), etc. Then (15a) implies
u.-= Fle, €), , which with (12) yields Up=2 £, - This equation can be inte-

grated from an initial condition of rest to z Ao
- Net accelenNon
7= £ AR Wad
U= < (16) 3 . .
which represents the mean acceleration M‘( waves,
due to the waves. As the wave front pro- /“0 uukm‘hoa

gresses, the fluid accelerates in the
frontal region.

Note that 8¢ =& atal ) in this problem, .

so that net neating is a higher-order effect. %Nz‘s‘ vy

One can check that the force exerted on the fluid by the boundary balances the
net acceleration:

a— (-]
F = -ph, L = ;"Efﬁdz 7
t T~ °
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Possible generalizations are the introduction of a non-zero 0(l) background

flow U(Z), and N2 = NZ(Z). Then wave energy is no longer conserved, but
wave-action A is conserved:

A= E _ Tt ity ;,116") (18)
T w-kWZ) w - ku(z)
satisfies the relation
2 ) - T 3
s+A + .,—i(ch) = O(pa,a ) (19)

where (0® 1is the intrinsic frequency (Bretherton and Garrett, 1968),0€;A)
dissipation can also be easily introduced into this formalism.

Generalized Eliassen~Palm Theorem for Two Dimensional Internal Gravity Waves

Let us now consider the basic shear flow i, which is an 0(l) quantity, and
N2 to be functions of height so that

g = ((2),0).

We will also allow dissipation and forcing to be present. Then the linearized
equations for this flow are, if e - )c + a;)x R

Dew swiag + P = X7 (20)
Dow'+ P, — 0 =2 (21)
0,0 + Nw’ = R (22)
al o+ W = o, (23)

where primed quantities are deviations from the zonal averages, X' includes
viscosity or externally imposed wave forcing, Z' is a vertical forcing term
and Q' is a thermal forcing term. Note that Z' should not be confused with
the slowly varying height defined in the previous section. At this point we
should also define the y-component of vorticity to be
W' - uz - wx-
The disturbance vorticity equation can now be ,bptained by partially

differentiating (20) with respect to z and (21) w*th respect to x and
gsubtracting to give

- LA~ / - /
0(‘ (U, 4 w,a.zz + 9; - X& Zx (24)
and if we let ¢/ be the vertical particle displacement then
w’ = 0,8+ Ola?), (25)
. b o il
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€/ being zero. We will also define q' to be the time integral of Q'
following the mean flow @, that is,

Q' = Deq’, (26)
Rewriting (22) using (25) and (26) we obtain the equation
! / \
De( O +# N2§° —q') = 0(a?)

If the initial conditions of our problem specify that the system is at rest at
t = 0 then the equation above may be integrated to give

/ 2o/ -
Q'+ N€ -9 =0 2"
This equation relates particle displacement to buoyancy in the obvious way,

that is, a rise in the particle position leads to a decrease in the buoyancy.

If (25) and (27) are incorporated into (24) the disturbance vorticity
equation becomes

Delw’+ €78, )- N = X, - 2] N (28)

!
where A 1is the dissipation. Now multiplying (28) by €’ and taking the
zonal average of the resulting equation, noting that

't = W) =0,

we obtain

¢ = TBw T TaL) = B(€w)=ww + &g Dy(557) (280)

However,
—

AN Sl N 7 ) e 7 ns
ww <= Wilai~w/j = (W’a’)L “ww) wlwy

the last two terms of which are zero from the continuity equation (23) and
because

T = [T -
w Nx LW )1. 0)
so that (28&L) may be written as
~ g S7A &4
P — P I A’
)t’{. € T 'i“*z—zf'l} (& w”)z_ = £4 0((1 ). (29)

Note that - _
06( ) = )(-( ).

Equation (29) is of the form of a conservation law

211 ’ ;ﬁ = Dissipation/forcing + 0(a4)-. (29a)
de )2
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This is known as the Generalized Eliassen-Palm theorem for two dimensional
internal gravity waves. It is more general than the work of the previous
section because it has not employed the two scaling assumptions used there;
only 0(a) assumptions have been made. It is a generalization of the Eliassen-
Palm theorem (Eliassen and Palm, 1961), which considers a linear conservation
system with steady waves giving the result

/ 4 -
(W' wi)g = 0.
The question we wish to consider, having found the above result, is how do

the small amplitude waves influence the mean flow? To examine this problem we
will consider the mean momentum equation

-

“w, + '{»‘1(’4‘,&:--(«’w’)‘L P X

If we assume that the boundary conditions imply that w = 0 then (29) may be
used to give

L, = -){ar + far + %, (30)

e~
where . -
A = le" - i’ ‘a';zg’l.

This equation relates the mean acceleration of the flow to wave transients and
dissipation, and forcing terms (plus nonlinear terms in Q(a%)). Thus the
Generalized Eliassen-Palm Theorem (GEP) gives us an insight into what
influences the mean flow. Note also the corollary to (30) for steady
conditions in which the whole flow, that is, the linear waves and the mean
flow, is conservative, namely

U, = 0.

This is a nonacceleration theorem which is known as the 'Charney-Drazin’
theorem (Charney and Drazin, 1961).

The GEP theorem also gives useful information about 'wave action', namely,
that for slowly varying waves the theorem reduces to the conservation equation
for wave action

- 3 ;g E
:‘l___( = f 3 )"%-z—.( wz’k._ ) = dissipation/forcing, 31)
‘_ As

where C_ is the group velocity of the waves of wavenumber k and ‘wave

action' is the quantity E/{(w -ku), which is the ratio of the wave energy to
its relative frequency. This equation, in the terminology of (29a), suggests
that B/A may be regarded as a generalization of group velocity.

I111. QUASI-GEOSTROPHIC FLOW ON A /3-PLANE

In this section we will derive the GEP theorem for quasi-geostrophic
disturbances on a /3 -plane and examine the implications for the 0(a?) mean
flow effects of these waves. In doing this the transformed Eulerian mean
equations (TEM) will be derived and discussed.

We will consider our height coordinate in logarithmic pressure terms, that
is, define

Z = —“"‘(P/PS))




-~ 108 - l ’1

where K is a standard reference pressure, often taken to be 1000 mb, and H
1s a standard scale helight (H = RTg/g, R being the gas constant and Ty a
horizontal average temperature) which is approximately 7 km for the strato-
sphere.

Let our flow be conservative, then the equations of motion are

(Ve + «. V)3 =0 (1)
V.u =0 (2)
w = [u,w)o):(‘ Wr,v 'Yx)o\)) (3)

where q 1s the potential vorticity defined by

G=L+ gy + ¥t ¥, 4 @i (EQY,D, (4)
and
Pc(l\/:' p& ‘)_Z/H

-
Do

Ci2)= £/ NU(D)

M) = Rrdr 4 ’Sl]
Ho dz oo
@, being a standard density and X = R/CP’ the value of which is

approximately 2/7 , C, being the specific heat of air at constant pressure.
For more details see ﬁolton (1979, sect. 11.3).

Now

T= %fe ¥, = ©&Xi/M

é being the potential tempetatﬁre, so
1 kda ~Ky/H
N (l-) = K c €
W dz
and from (4)

?’rﬂ'/’)""fx‘“y + (’;;((’cﬁ% )z - )

This form for the potential vorticity is sometimes more convenient than that
expressed in (4).

If we let all our variables be represented as the sum of a zonal mean plus
a disturbance, as in the previous section, then

G2leeny+¥, 4 ¢ (RE%D, (6)

" -
§'= ¥, 4 V,; +G(ecy), . )

a ) -=-ulI--h-hh-u-hﬂ-‘—ﬂ‘
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The northward eddy flux of potential vorticity is then (Bretherton, 1966)

——

G5 TR < (R ), + T v,

which can be rewritten as

L , gy
m, — “4—"~”)7 + (Q‘[“ '/;‘39 >2.‘ (8)
z3

To obtain the GEP theorem we will use the linearized potential vorticity
equation

0‘,;/ - V/(;_’ =0 (9)
where -
Ot ~ st‘ l'-(»(«él
and, from (6),

by m BTy, -0 (ce&.), .

We also define the northward particle displacement ﬂ/' to 0(a), by

bev/= v/, (10)

Combining (9) and (10) gives the equation

0y’ + M) =0
which, 1f the initial conditions specify that the fluid is at rest at t = o,

implies that
.’_ -n .
‘; = | 7‘»- (11)

The lefthand side of equation (8) may now be rewritten, using (10) and (11), as

(Jb?/V, = - Qozi\/ VF::, < (.'3‘;)! '7[):‘;)/ C T (‘1("' ,};)’ ‘;F‘)t' 1 O(Q"‘

so that (8) becomes

r/

(50,9, 7) - %— (-0, av) + L(eh T767) = Qo). (12)
7/ Jz Qe

This is the GEP theorem for conservative quasi-geostrophic disturbances. The
quantity

-

A= e %, T

is sometimes called the "density of wave activity” and may be written, using
(11), as

A= ch."r’”/i,_ (13)
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The quantity analogous to B in equation (2%a) of the last section {is

Fa(o ~0aiv, of, 7), (14)
’ 6.z

which i1s known as the Eliassen-Palm flux vector.
There are several corollaries to (12):

i) For steady conservative linear waves (12) reduces to

v F = o (14a)
also Q}V’J’ is identically zero everywhere. This result (l4a) was
proved by Eliassen and Palm (1961).

i1) As the velocities are geostrophic, F only involves geostrophic
quantities and should be a useful diagnostic. However, as A involves
F may not be as useful as it appears when the conservation equation (12)
is considered.

/

iii) When dissipation is included, (12) takes the form

A( + ‘7-fr=-c7.
iv) Consider the wave action equation I1.31 for slowly varying waves and
mean flow found in the previous section. A comparison of this equation
with (12) suggests that F/A may be regarded as a generalization of the
group velocity C9 of the waves to cases where the waves are not slowly
varying.

If we now turn to consideration of the 0(a2) mean flow effect of the
waves, first note the appropriate 0(32) mean flow equations

Ze = LT = —v))y (15)
O + O, w. = ~(vely i@, (16)

where (U&~,07a5 is the mean ageostrophic wind and Q is the mean thermal
forcing, with the continuity equation

Wo + 8V (oW =0 (17)
)y ‘2z

and the thermal wind equation
= D -~ 18
r,,-u,_‘f- Mz} 6, =0, (18)
where

Mzy = R ***
u
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Defining the "residual mean meridional circulation” ({7') CD') by

— Wy —_— = . T
AR AR () 9)1. 'w':“f“"('{zg) (19)
5, g e, Y >
we can derive, from (15)-(17), the transformed Eulerian mean eq. (TEM):
L, - [,T" =L 3y (20)
Ce
B,i 6, w* = § (21)
~r - e
Yyt (WL 0. (22)

The TEM equations also include (18).

If the TEM equations are combined then an equation for iZ, in terms of
¥v. F and Q can be found, namely,

LYy + @) (0 e = Cvr),, -0 (408, /8,),. (23)

Thus given boundary conditions for U, a knowledge of . F in the eddy forcing
term and Q in the mean diabatic forcing term, equation (23) may be solved for
T. Another point to note about (23) is the nonlocal response of G, tpo & F.

If we are interested in (V*, W?) as well, then by defining

vr=-¢ K, we= ¢ j; (24)
the TEM equations give
L): + Qﬂi) (¢! 3,_)]— f V F) + (,céV/é (25)

so that (V*, w*) may be determined through (24) ( cf. Eliassen, 1951). Note
that one has to be careful about the boundary condition for (25) (Andrews,
1980).

IV. SUDDEN STRATOSPHERIC WARMING

Sudden warmings of the polar stratosphere during winter are perhaps the
most spectacular large scale events to occur in this region of the atmos-
phere. In this gsection we will apply the theory of the previous lecture to
this phenomenon.

These sudden warmings occur about every other year in the winter northern
hemisphere stratosphere. They are characterized by the basically westerly
polar flow weakening and changing direction and the northward negative
temperature gradient reversing so that the pole warms. This sequence of




e 1

events occurs very rapldly in January or February with temperature changes of '
the order of 400K in five days. The sequence of events can be observed

from satellite data (Palmer, 198la,b)} a view of the zonal average wind field
for the 1979 warming is shown i{n Figure 1. It can be seen from the series how
dramatically the warming occurs.
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Sudden warmings were first observed in 1952 and the currently accepted
theory originated with Matsuno (1971) who suggested that planetary Rossby
waves of wavenumber m = 1 or 2 propagate from the troposphere into the
stratosphere and by nonlinear rectification of these waves the mean flow could
be altered. Matsuno Invoked transients of the waves to produce the
deceleration of the polar jet and used simple analytical and numerical
models. An alternative interpretation is that the rapid heating can be
ascribed to the descent of air parcels.

A number of numerical models have appeared since Matsuaso's work as well as
diagnostic studies. Recent discussions, however, have made extensive use of
the TEM equations and the EP flux F. These include Dunkerton et al. (1981)
who used Holton's model and Palmer (198la) who studied satellite data.

Palmer used the "EP" diagnostics F and V. F in spherical coordinates.
In these coordinates the mean momentum equation is

Z,-4T+= (0 L .
Aoy
where Y 1is the latitude and a is the radius of the earth. In terms of
angular momentum this equation may be written as

Je(meesPad = Tonca p7e = ¥.F.

As in the /3 -plane case V. F is zero unless there is wave transclence or
the fluid is nonconservative or nonlinear. Recall also that F/A measures wave
propagation as it 1s analogous to 9!'

To demonstrate the uses of ¢ F we will consider an idealized situation
and then examine Palmer's analysis of the 1979 warming. First, in Figure 2
typical contours of ¥.F are drawn in an "EP cross-section”. On this diagram
integral curves of F are also shown - these can be thought of as rays along
which waves propagate, even without slow variation, provided A is positive.
The prominent equatorward tilt of these rays 1s expected from the theory of
Rossby waves as wave packets are expected to follow great circle paths. For
more details about these diagrams see Edmon et al (1980).

In Figure 3, taken from Palmer (198la), we see the "EP cross-sections” for
the sudden warming of February 1979. On the 17th of February precursor rays
from an m = 1 wave are seen coming down from the mesosphere while lower down
the field is not unusual. However, by the 19th some of the tropospherically
generated waves are tilted toward the pole while a strong convergence zone is
developing near the 10 mb level which is possibly causing the deceleration
observed in Figure 1. After some rapid changes in the polar convergence
picture the "EP cross-section” settles to a strong divergent pattern at 80ON
near the 10 mb level with m = 1 waves propagating out of the polar region.

For more details of the intricacies of this figure see Palmer (198l1a).

——

G @

- A
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Fig. 1. Meridional cross section of zonal mean wind velocity (ms_l).
Regions of easterly winds are stippled: (a) 17 February,
(b) 19 February, (c) 20 February, (d) 21 February,
(e) 23 February, and (f) 27 February. The values of the
pressure coordinates used in this and the following figures
are related to the scale-height coordinates used in the text
by the following: 100 mb-14.7 km; 40 mb-20.5 km; 10 mb-29.4 km;
4 mb-35.2 km; 1 mb~44.1 km.
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The continuous curves are contours of V.F and the broken lines
are curves of E (which are everywhere parallel to the total value of
This is an idealized view.
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Fig. 3. Contours of £ A4 F labeled in units of 10—4ms—2,

with some integral curves of F. Negative values

of £4F are stippled in the figures. (a) 17 February
(dashed curves are dominated by wavenumber-1 flux.
Full curves are dominated by wavenumber-2 flux),

(b) 19 February, (c) 21 February, (d) 23 February,
(e) 26 February, and (f) 28 February. For £ sce
Palmer (198la)).
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Another diagnostic that Palmer uses is found in the terms of (1). 1In
Figure 4 the values of these quantities are plotted for three pressure levels,
the fv* term being determined as a residual and the term averaged between
600 and 80°N with cosine of latitude weighting. On the 1 mb plot a strong
correlation between ¥.F and U; is seen and the various decelerations
observed in Figure 1 are clearly indicated. At lower levels these features
are not so obvious and at the 100 mb level, just above the tropopause, there
is virtually no correlation.

r
L

—. 90 ——— 5 —

' poracm'v'

Fig. 4. Momentum budget averaged with cosine of latitude weighting between 60

and 800N for the period 17 February to 3 March: (a) 1 mb, (b) 10 mb
and (c¢) 100 mb.




- 116 -

In the model of Dunkerton et al. (198l1) similar diagrams were produced.
They also calculated the residual circulation T* which on day 22 of their
E?del looked qualitatively as sketched in Figure 5. Notice the large negative

w* near the pole (cf. (24) of the last section) which implies a warming in the
polar stratosphere as

—

ge: _W'Gz_.

90

N )

kewny
m
lo

pele 2quator

e

Fig. 5. Plot of K modelled on Dunkerton et al. (1981, fig. 7).
Cross-hatched region is where V.F < 0. Note the cooling in the
mesosphere.

The Eulerian equationsas opposed to the TEM equations of motion need to
include eddy effects to obtain this result as the Eulerian vertical velocity
may be opposite in sign to W*! This was demonstrated by Mahlman (1969) who
found the Eulerian velocity field to indicate positive W near the poles while
tracer experiments gave the opposite result.

Having examined the use of some diagnostic tools we will now take a short
digression in ray theory. If we define a Rossby wave of zonal wavenumber k
and phase speed c by

y'= f’(‘/ﬁ\ el k0=




R
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then the refractive index for these waves is

% T
thzz Y k ___ N
- “1
L« ~C
= LY/NY,
Palmer (1981b) and Karoly and Hoskins (1982) showed that F tends to follow
"ridges™ of Q. This is an important point and will be 1llustrated shortly.

where

A Qualitative Description of the Dynamics of Sudden Warmings

During a normal winter waves tend to follow paths expected from the
curvature of the earth, away from the pole as in Figure 2. However, if the
polar night jet is further north than normal a region of low refractive index
Qx may be produced, as shown in Figure 6, which focusses the EP flux towards
the pole, that is, F follows "ridges” of Qg. From equation (12) of the last
section we can see this convergence near the pole. As the waves are growing
in amplitude

vp=s e ek W o g0

and from (1), as (¢ f)/(;awfo is large and negative near the pole, 4«,.< O.

low (;L

pole €yvater

04

Fig. 6. Integral curves of F following "ridges™ in Q,




- 118 -

Of course the intriguing question that rzmains about these warmings is
what is the mechanism causing the tropospheric waves to get large to begin
with? Plumb (1981) has viewed this problem as a resonant self-driving and
McIntyre (1982) considers the consequences of nonlinear refractive critical
layers but more work needs to be done to clarify this question.

V. ZONAL MEAN MODELS OF TRANSPORT OF CHEMICAL TRACERS IN THE STRATOSPHERE

The main reason for interest in the transport of chemical tracers has to
do with the concern that ozone (03) may be destroyed by certain pollutants
such as halocarbons. This has given rise to much research because 03 is
primarily responsible for the absorption of ultra-violet radiation in the
stratosphere and any large increase in the amount of u-v reaching the
biosphere could have serlous consequences for life forms on the planet. The

ozone layer also contributes to the heating of the stratosphere as a result of
its interaction with u-v radiation.

In figure 7 the concentration of ozone in the atmosphere is shown (from

PERCENTAGE DISTRIBUTION OF OZONE

SUMMER WINTER
8 —
] —
% in da —
hist
istograms | 9 [__
ZlO ll.‘) ll0 .") 1mb 50 km
2
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50 20
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0 L1000
90° 60’ 30° 0 30° 60 90
3% of total LATITUDE
T B omb SUMMER WINTER
<0-5% 0-5—07% 0-8-10% 11-1.3% 1-4—1-6%
Fig. 7. The mean percentage distributions of integrated ozone amounts. e

top histogram shows the mean distribution of total ozone in latitude
bands, the left hand histogram shows the mean global distribution of
integrated amounts in horizontal layers at different heights and the
central diagram the percentage of the total global amounts in annuli

round latitude circles in the different latitude bands and height
layers.
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Murgatroyd, 1982). The two reglons of maximum ozone presence are at the
equator at about 30 km and in the winter polar regions at a height of around
20 km. However, the ozone is not produced in the latter region so it must be
transported there from the equatorial stratosphere. Understanding this
distribution involves a knowledge of the chemistry of 03, a very complex

field due to the hundreds of potentially important reactions, a familiarity
with radiative transfer problems and a knowledge of the dynamics of the
atmosphere. For a discussion of the many aspects of the ozone problem see the
review article by Murgatroyd (1982).

All scales of models have been employed to study this aspect of the
atmosphere from 3D GCMS, which are highly expensive, though the 10 models
often used by chemists to zonal average 2D models. These last can include
aspects not treatable by 1 wmodels without the expense of GCMs. Earlier
models of this type applied eddy diffusion ideas to mean eddy flux terms but
now more models use wave mean-flow theory (Plumb, 1979 and Matsuno, 1980).

Zonal Mean Model of Dynamics of Tracer Transport

We will now consider a model of the dynamics of tracer transport in terms
of the primitive equations on a /3 - plane. A tracer of concentration R will
be assumed to be present such that

bR .
5> =S (1)

S being a term representing the sources and sinks of the tracer. If we
zonally average (1) we obtain

— —_ i — - -~ —‘:—/- — - .-’_"
Re + \/-2‘7 T wkz. = s - (V R )/ Qa‘ (Qc w R,)z_ (2)
using the coordinates employed 1n the quasi-geostrophic flow section.

To simplify our analysis define the residual circulation in a slightly
different manner to previously, namely, let .

TV - U (X)),
w* = w 4 iy.

where fyrwill be defined later in (10). It can then be shown that

R+ ToRy t Wohka=T - 'V, (3)
where _ .
(_‘ = QG(VIRI - xez , WIQ’ + kny) “

Also let the 0(a) flow be purely zonal, §’= (G(y,z), 0,0) + 0(a2).
Having set up our system we linearize the tracer equation (2) to give
DR+ v'Ry, + wiky= g’ (5)
and define particle displacements by ﬁl = (f') 3’,f’) with
Ben'=z v’ ) (6)

\
’
B/ =w' |
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Also define an integrated source-sink term s' by
/
Nes' = S (7)

Then, 1if our initial conditions specify that all quantities are zero at t = o,
(5) may be written as

i A /B
R'+ Wk, + €k, =3l (8)
Similarly, if ©’ 1is the potential temperature, then

0« Q = ©6+406, F8 <9 (9)

s ~
Y

0&'1,‘ Z Q
If we follow Andrews and McIntyre (1978) and choose

" 0, (10)

where

-

f i ’:u"('-)' 92 -
ivei*
(recall that i 5 \Fﬁg‘/ 5L before) then

J

(

6 Gy = VR XRp= VT -0 Ry - (3 F TR, (1)

where G(y) represents the y—cowponent of G. This equation gives us a linear
relation” between G(yy and the gradients of R.

Now, from (6),

Wl s ) (W (12)
and e 2 (TR0, - T
£ = M e (13)
so combining (11) - (13) we obtain
=i — Ter W) A z )
Pr (“\v) = Vv - %_(")"\ky - i('\ f)tkl_gkz (14)
7 Gay = WS = LOVEYR, -3 (F72), Ry + BR, (15)
where
8= twele + X ~ww = {(v7€ ~'wi) F X (16)
Therefore, 1f 1,§ = 2,3
5 =< W3 @ P 17
Cla = W - X 25 "Kg-kq (an
where
o’ ¢ A, {(iqh)f
K‘? = L (3 f) = (l _ (18)
Y 1 Ve ;(1,()‘- U?n\(— >
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(4) o 3
KLJ' - /‘B C (19)

and (17) should be interpreted in teansor notation.

Employing (3), (4) and (17), the tracer equation may now be rewritten as
B+ v 2y A R R N g’s"'%f;"f@"i )72 + b)) 2o

where £ (S) and K(2) represent the matrices given by (18) and (19)
respectively. ~

We can now note the following points:

a) Rewriting the term with (8) in (20) as

(00" V- ; !:(m», WZ} = («," V- /0‘, 2 ,3,2‘2) - o B E.\)

(v ) - /ﬁ{'(f“ 3), , —Ba) (21)

shows that h.,(a) represents an additional advection term. This suggests
considering a new velocity

vt = v a v i
= (7- @ EB)), W (E-B)y)
where from (16) ]
V-B= (777 -vf)

which involves Lagrangian quantities ’[’,J” , while 7 from (10) involves only
Eulerian quantities. It may be convenient to use v instead of v* in model
calculations which provide q/' and ¢/ easily.

b) As shown in Holton (1981),

N . ‘., -~ + nonconservative terms
5 2/("5 4»(5 L)}t in q' and s' (22)
Here 4] is normal to mean isentropes, i.e.
n - Ve (23)
~ L
(vé/
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while  is tangential; thus if 8' = q' = 0 B vanishes when the waves are
steady or when particle displacements are either parallel or perpendicular to
isentropes.

c¢) Similarly, the symmetric tensor ’_(8) vanishes unless the waves are
transient (at least for wave amplitudes of 0(a)). (8) represents an

anisotropic diffusion or 'anti-diffusion' of tracers by the waves. Dispersion
occurs as the waves grow (G. I. Taylor, 1915, 1921).

d) The equation for O 1is
— — - — = d“\_bgllt i . v/. 3
gt-fl/,ﬂ fW'&qZ = te~-mo» ¢ \7 (A © /U%) rO/a)
; "~ 4l Ql (24)
;o oy
&, 9
i _1\2
where A = 1/2 {(3 'L) }
The tensor appearing in (24) differs from the tensor appearing in (20) because
B contains terms in (/& . The asymmetry in the two equations thus goes back

to the definition of X.

A Simple Example

Suppose the waves are lineat, steady, inviscid, adiabatic (Q'= q' = o) and
chemically inert (S' = s' = o), but that Q and § are nonzero. ThenK_ 8) =
KSa) = o0 and (20) reduces to
=

Ry + v*Ry + w*R, = §. (25)

Using (9) with q' = 0 and the assumption that (S ) {VL' ‘)L: o, (10
becomes in this case
i . _ve!
Oz

as in previous lectures, so for steady, conservative linear waves, v* matches

its earlier definition; moreover V* = y‘_"(see para. 6) but v* & v.

The TEM equations reduce to

“t,/u; /’)v'fu;—“-‘-)? (26)

({a, +/’@ e = O 27)
_ Vi ot e (p. wig =0 (28)
Oe 1 v by +ﬁ'di = g (29)
;?—tf V'Er'r wt Pa = 5 (30)

Now assume Q is independent of R (which may not be valid in general, but it
greatly simplifieS matters) and that X = 0. Equation (30) then decouples from
the others so that (26) = (29) can be solved for the diabatic circulation x* =
(v* » wk) forced by Q alone. The solutions for V* can then be used to advect
R from source (§ ? o) to sink (S €o).

y ]
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A simplified version of this example was studied by Dunkerton (1978) who
| considered conservative tracers (S = 0) and neglected and V & y - With
these assumptions W*= Q/© z and V* can be obtained from (28). The resulting

V* is plotted in Fig. 8.

With this simple model, Dunkerton was able to resolve a long-standing
; paradox. Brewer and Dobson, around 1950, inferred from tracer concentrations
E a velocity pattern similar to that of Fig. 8, but later measurements of
Eulerian mean quantities, showed the existence of an indirect Ferrel cell in
the winter hemisphere (Fig. 9). Dunkerton realized that both velocity fields
could be correct since the Eulerian and Lagrangian flow fields do not match.

Dunkerton's model has since been extended. Pyle and Rogers (1980) redid
Dunkerton's calculation for ozone with a more complicated 2D model. Holton
(1981) included transients, dissipation, and considered N0, which has a
tropospheric source but is fairly inert in the stratosphere, while Tung (1982)
reformulated the problem in isentropic coordinates.

<+ 50 '/’E'ﬁ*
420 km
(-\ /"
. N
Summer ' E¢ winter

Fig. 8. The residual mean meridional circulation, v » resulting from

Dunkerton's model. The flow is consxstent with observations of
conserved tracers.

IN pirect
/L:’r rel ce /

+ So

’-2,0

}
T

Fig. 9. The velocity field inferred from Eulerian measurements. Wave
activity strongly affects the winter hemisphere.
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VI. THE GENERALIZED LAGRANGIAN MEAN

David Andrews

Thus far, the discussion has been limited to small amplitude waves. A
question which arises is whether these results can be generalized to rinite
amplitude. The answer turns out to be yes, at least in a formal sense, if
instead of using an Eulerian mean or a transformed Eulerian mean, a theory
based on Lagrangian means is considered; a Lagrangian description in its
classical form, however is inappropriate if particles move very far from their
initial positions, as they do when mean flows are present. To overcome this
difficulty, an idea originating in the work of Bretherton (1971) makes use of
a hydrid theory: It retains the Eulerian coordinates X and t as independent

variables, and Eulerian ideas like "steady mean flow:, but it is Lagrangian
because fluid particles are tagged. The hybrid theory is called
the"Generalized Lagrangian Mean" (GLM), where the term “generalized" refers to
the fact (discussed later) that a number of averaging operators can be
defined. Once set up, the GLM leads easily to a nonacceleration theorem and
conservation laws for finite amplitude waves (Andrews and McIntyre, 1978a,b;
hereafter I and II respectively).

Eulerian Averqgg

We define an Eulerian average (-3:

ié(x,t) - 7é (x,t) with the requirement that it commute with differentiation

I (O = '?/uz)

where A denotes either a spatial coordinate, xj, or t. (Other properties
of ( ) may be found in section 2 of I.) We shall write ()t or (~ )Xi
when the averaging applies specifically to time or space.

Lagrangian Average and Particle Displacement

In the classical theory, (-—3L 18 defined as a time average following a
particle. A particle displacement vector, § (x,t), can then be chosen such
that ~

-t

y =o
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so that a particle located at X + (;,t) oscillates about a mean position X.
When the mean flow is at most O(a) the velocity of the particle is

‘Zif - g(gr i(g,d)
L —
J = u‘({\ r ~§'V$"

-~

= u'(g) r Ola®

-t
where the second line follows from a Taylor expansion and where « = d + ¥«
This can be extended to include an 0(1l) mean flow by adding an advective term,

giving -t ' -
(2+ 4 V)3 - we 3vEN . O
= uty Ota®
In either case, the Lagrangian mean of a quantity ¢ is

¢1x t) = ¢/X'§ t) ’»’5/),!) t 3 £33 3, 91 . Ola®)

JGJJ

Here the notation é" -j;?( ¢ has been adopted.
v

In meteorological applications, it is often advantageous to apply spatial
averages (e.g. a zonal average) rather than a time average following a
particle. We therefore want to generalize the Lagrangian mean to

- 1
F = flxei,e) 3%
where the average on the RHS of (1) is not necessarily over time. Defining
-—L . —L
B = (9 + a*.v)

g would then satisfy

51‘/,3) = _41[/5,&) : u(!'i;‘) - L?‘-/.’S:f—) (2)
with
é = uyd =0 ,' (3)

but can ( )L and :f be found such that they satisfy equations (1), (2) and
(3)? To make the notion of a Lagrangian average plausible when (’L) = (DX
we consider the following mechanical analogy.

At t = $0, let the wave amplitude be identically zero and consider a line
of fluid particles with spacing & x lying along the x-axis (Fig. 1). A thin
massless rod is joined to the particles by elastic bands. As the wave ampli-
tude grows, the particles become displaced from R by an amount equal to the

“elagtic band vector” § (x.t), where X 18 the position along R. Although R
is constrained to stay Korizontal it remains in static equilibrium with the
particles and thus follows them if they undergo any mean motion. In the limit
of A4 x -~ 0, equations (2) and (3) show that the particles pull R at velo-
city GL = y(x + § , t)X. By requiring that § = 0 at t = ¢t,,
ul can be found in principle by integrating along mean traject~ries.

L—}‘
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Given that ( )L can be defined, several interesting properties follow.

Definin ,
: #xr - flxr 1)

7 - d
= X+ Flx.e)

l... 7/
then (2) implies that

55 (B E )5

t
t
r

—7
The point I K+ 3 moves with the actual fluid velocity ¢ yhen the
point x moves with velocity u.L Use of the chain rule gives (I, equation

2.4a b)

D4 (e dt V) Fixe3t)
;/%L) (¢)¢__J/tf“(¢)"’/"

- 3 3
/ LY
Pt
Averaging both sides leaves
-t b -/

D¢ - ¥

Pt
Thus the Lagrangian mean of P /pe acting on S‘ carries through to both ©/5t

awd f individually without generating eddy contributions. In contrast, the
Eulerian average of a total derivative produces an eddy flux term:

D¢ - S5¢ + a-i
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where £ = /Jt tu 'V). For this reason, the Lagrangian mean is especially
useful when applied to, for example, the equations for entropy S. It simply
transforms

o5

— +¢ = O
2 4
into the averaged equation

- L byl

p s +¢ =0
Again, eddy terms do not appear.

In general the Lagrangian and Eulerian means of a quantity are not equal.
The difference is called the Stokes correction and for small amplitude waves,
1t can be calculated through a Taylor expansion:

S e fhreush e Tayter = ‘ —
£ g -¢ = 3%, +t33% 5%,'
-5

When 5}‘“1, ¢ becomes the Stokes drift (Longuet-Higgins, 1969).

e ? Ola?)

4

Equations for Mean Flow Evolution

Writing the equations of motion as

Pu; -1
’Z,/git) = E-t_‘ + ‘Z[_‘{thl.s‘/’ ¢+ 'é:j f€ P‘J' r ZJ :-D (4)

where _ér is the gravitational potential
and defining as before

ro_
i -5 * j! fft'z)

we want to evaluate
7 ST = O
LIyt M,//i-/,t) (5)

leaving the averaging operator general for now. The algebra is performed in
Appendix B of I resulting in equation (3.8) of the same paper. If the mean
quantities are independent of x; and (") = () ', then the x
of (5) is (equation (3.9) of I) 1

et e wwm U eums ems s s @es W= wes SR G

-component

-8 —T -T—
Xo- %,,X P (6)

v
ﬂj('

where xj is the Lagrangian disturbance forcing, q describes diabatic

effects, and ]
Pr==3,  fuls -él-".’.f M

is the pseudomomentum.

15‘/14',‘-/7,) + 202 xa"),

il
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In Eulerian form, the equation governing conservation of mass is

¢ V-u = ©
pe TCU% |

A natural choice for defining a Lagrangian mean density, é; , 1is that it
satisfy
L~ -~ -6
(3 + f) 67’01 = QO (8)

This definition leads to the relationship (equation (4.3) of I)

P - F P (9
= e dff//—iﬂuf
The equations for the mean state become complete with the equation for
entropy (see above)

l."lv ? = O

and the equation g; gtate

- F(sp4) =4

X - 10)
<4 3 _3 /S s (
=(p-f)+F/S,,9)-/'(5,P>
where f’- F(S,p). If the waves are O(a) in amplitude A 1is 0(a2),
Specializing to a longitudinally symmetric mean flow and writing
[u V- W) /94"']:
the equations of motion are (equated 5.5 of I):
- by~ ~vL/ o Z
/“"P)'t* V/uu_‘ ,,_*2.'1)"1'\/ [u,; Po.'i) =I, (11)
y - momentum equation = %XE (12)
z - momentum equation = =X3 (13)
3 - (14)

L _, =t _ -
'f/c 4 VL“S:',_ A ‘5‘:3
Crt -f/(o \}")n_ +(E‘;’ Q‘-),s = O (15)
(6' - ,c‘(_s“: 5+) = O (16)

We may now ask for the conditions under which steady unidirectional flow
is allowed in the presence of waves, 1.e., the conditions for which

r?tf“—:'/;t(a:sb"'j = ©

0
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= (‘2‘; D/Q)'

and -t

By inspection it is allowed when

|

1
TR
| AP X K, a5 0.
|

l

The waves must be conservative and steady; 1f;y1 = 0 or (:)L ,l o,
cumulative mean flow changes can be expected.

Wave Action

Suppose that ( ) is an ensemble average, and that the quantity o< 1s
used to generate the ensemble. We also require & = ¢(",LJ"‘ ) to be a
continuous function of o¢ and that i

¢ux. = (55)101.'

Then by taking

3., M;(x:3,¢) =0 an

v J o~

the equation
DA + f v -7 (18)
can be derived (Appendix A of II), where
A-= ;3’,0,_'{“!"3“-‘3) (19)
BJ i /"53;;,,‘ Kij (20)

T =5 K g @

g is8 zero for conservative motion and Kij is the cofactor of s‘)/' in
J =detf E."‘,j} (see Appendix A of I). A'version of (18) was found by
Hayes (1970) without making slow-variation or small amplitude assumptions,
although his work was based on a Lagrangian density and therefore could not
include dissipation. Using the continuity equation (8), (18) may be
revritten as

9‘//74)-} V/@fé‘f4/=€? (22)
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When mean quantities are independent of X (writing x = (x,y,z)) an
ensemble can be generated by translating the disturbance pattern by a

horizontal distance o¢

¢/¥,t,‘1) z ?{(x =,y 2, t)

1s the x-component of the pseudomomentum. Conservation of P1, described by
(22), arises when mean quantities are independent of x. That only mean
quantities and not the whole system need be invariant to translations in x is
what distinguishes pseudomomentum congervation from momentum conservation as
usually encountered in physics. Similarly, time invariance of the mean state
ylelds conservation of pseudoenergy.

Suppose (II, section 4) the waves are linear and slowly varying, with

3‘\' es('.‘_{ -wit -“)

where © 1is now a phase shift. Taking (-.) to be an average over phase
ylelds (after some manipulation)

- E
E?;( w-& R
Q’;Q‘gz,g.:-&

where C, is the group velocity. This is the form for action density and flux
derived by Bretherton and Garrett (1968)

We also note that in an earlier lecture, a measure of wave activity for
quasigeostrophic flow was found to be

Av =235 77 + O@®
and to satisfy the conservation law
DA + V- Fr =0 2za)
Defining A; gsuch that
= /4u/ r VA24a
and substituting into 22a gives
Gipt T lfu- A =0

This 18 not quite the same as conservation or pseudomomentum, but in the case
of slowly varying waves, the two agree.

Relationship Between (v*, w*) and vL, wL)

From equation (4.12)

7 = V—ﬂ,"( L°°_1_U_> (23)
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and from (5.9)
(24)

6" 1'9} + I, =2

where q' represents diabatic effects.
If u = (u,0,0) + 0(a2), the Stokes drift becomes

7 :vi. 5.0 ¢+ OGY (25)

-.L -
VARV .
A linearized version of (2)
-t X
Ds§ = u
glves ~ '
D § '—'(Jt*ayx).fx
(26)

= u'_.'_ {! sz

while the linearized density equation in ln p coordinates 1is

V- (]0. _L,L’) =0 Co = ()S e: 2/H (27)

Solving for u' in (26) and substituting into (27) gives

Pou’), = {2, sy -p.8;a., f.
=5t /(P"';C)Ji + dy; f"‘s:l,x -ID° g"""a°'j}

Thus
ﬁt {¢°f;)3if = O

and assuming zero wave amplitude initially,
(28)

Vip§5) = ©

From (25), the Stokes drift can be written as

fvi=pf. 3-Vv - Ve leo 37 (29)
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and from (24)

2
Then 1
— ;Tz; §7%§ 327;3
AU S ! R — - v, AT - [ -
t v {L L’[ () 2 (a 92
and

= f)v[\—/‘ - \7 ) + nonconservative terms
+ transient terms
+ 0(ad)

Hence v* = vL to 0(al) when the waves are steady and conservative.

Further Thoughts

It would be nice to apply the GLM ideas directly to the atmosphere, but in
general difficulties arise (e.g. in obtaining § ); however it may be
possible to calculate ( )L and ¥ from simple circulation models. Some
progress along these lines has been made by Dunkerton et al (1981) who
calculate ( )L using a "modified Lagrangian mean". Another possibility
utilizes ¢ or S and Ertel's potential vorticity

- (w)+ 252) - VE
G

as tracers, since these quantities are conserved in steady nondissipative/non-
forced flows. "PY tubes" might be useful (averaging around such a tube has
some analogy to GLM; cf, McIntyre, 1980). Yet troubles can be expected when
the waves reach large amplitude, for P tubes twist up making ¥
ill-behaved. ~
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HOW RAPID IS PRANDTL-BATCHELOR EXPULSION?
William R. Young

The homogenization of a passive tracer in a flow with closed streamlines
occurs In two stages: first a rapid process characterized by shear augmented
diffusion along streamlines which takes a time of order p1/3(LU), where the
Peclet number P is Lu/ #, (L, U and K are length scale, velocity scale and
diffusivity).

This rapid process establishes a state where tracer concentration is
uniform along streamlines. Substantial variations may exist across
streamlines, however. The erosion of these cross-streamline gradients is
accomplished by the second stage: a slow diffusive migration of tracer
cgntours across streamlines. This second process takes a full diffusive time
Lo/ .

TURBULENT DISPERSION IN CONVERGENT FLOW
Alan J. Faller

A theory is presented that gives an analytical solution to the kinematic
interaction of a convergent (or divergent) mean flow and turbulence for
spatially constant convergence and homogeneous turbulence of a specifjed
type. The turbulence is characterized by its mean square velocity, v4, and
by its Lagrangian autocorrelation function. The problem is formally that of
the Langevin equation, and analytical solutions for the time dependence of the
ensemble-average variance of many fluid tracers are presented. The solutions
are compared with numerical solutions obtained by calculating the Lagrangian
motion of a large number of tracers.

This theory is an idealization of convergent flows that arise in Langmuir
circulations, longitudinal rolls in the mixed layer of lakes and oceans, where
convergent flows cause floating tracers to form lines parallel to the wind
{(wind rows) and where turbulence tends to disperse the tracers. Similar
situations arise with constant density balloons in the upper atmosphere (12-14
km) where the convergent flow caused by the Hadley and Ferrell cells tends to
cause the balloons to converge into zonal bands in the vicinity of 30 degrees
latitude while planetary waves and “turbulence"” dlsperse the balloons. Still
another example might be the subtropical convergences in the oceans where the
Ekman transport produces convergence while Rossby waves and turbulent eddies
cause dispersion.

Some results of the theory (Faller and Mignerey, 1982) can be summarized
in a few equations. For a linearly convergent mean flow, -t~ = -Ay, where
the y axis is perpendicular to the convergence line and A i{s the rate of mean
flow convergence, and for an autocorrelation of turbulent velocity given by
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and for the superposition of mean flow and turbulence
r~ —_
V= W+

the mean square position of an infinite ensemble of independent tracers obey
the equation

— 2.2 o, T 2
2 v'T o -vT
Y e = " [’-(TZ “7)] exp (- th

v
l-a

(D
+] 20 + 2 T o S WO i
y 1-o 1_a2 a(l+a) | exp(-2at*)

where the rotation is

—x

Al » the mean square turbulent speed, {sotropic and homogeneous,

l ,» the Lagrangian integral time scale for the turbulence alone,

o = AT, the ratio of the turbulence time scale T to the convergence time

scale A-1,

C?o , the initial convariance 4rko)y(0),

t* = t/T.

It is easily shown that (1) is valid for all «X_ by taking the limits
as &X—=>» -1, 0, and 1.

Note that y2 refers to mean square distance of the tracers from the
origin (the convergence line), not necessarily the variance of the tracer
positions. Thus all tracerc can start on one side of the convergence line,

_ggg_peed not be symmetrically distributed. The initial tracer variance is
¥<(0).

The steady-state solution is given by the first term of (1) and can also
be written

—_— . 3T o,
Aj;{,,o) = ,"7‘% Tl (2)

If we were to use the advection diffusion equation with the usual diffusion

coefficient Ky = A? T, the steady state tracer variance (i{.e., the concen-
tration variance) would be

= ArxX

(R
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‘ But with a modified diffusion coefficient K; = 47"T)/(I—r°‘) the correct
steady-state result, i.e. (2) is obtained. Kj also follows Spiegel's
theorem, namely that:

<< When two processes with different time scales interact, the time scale
that characterizes the total system is the geometric mean of the time
scales of the two processes acting independently.

In the present case the effective time scale would be

-1
+¥_ A T 6)
—/7‘—-
A+?

and with a slight algebraic manipulation it is easily seen that

f —= TF

]-(‘=/U'T . (5)

The steady-state result illustrates an important aspect of Lagrangian

statistics. In the steady-state tracer distribution there is no dispersionm,

so the diSPersion coefficient Ky = V2 Ty based on the total velocity,
vy = 7o+ N; , must satisfy Ky = 0. This implies Ty = O, where

T:/-"" fﬁ/(/r>”(/’v (6)

and where (%/ is the autocorrelation of the total velocity. For the steady
state (%/ "~ 1s given by

sxp [— /T ) — K ex —A/l\j}
6’\/(’;‘)-_—_ "eﬁf[ ‘ /)—o( 67( 2

which does indeed satisfy Ty = 0.

Numerical solutions for an ensemble of tracers following Lagrangian
trajectories have been obtained using the formula

/y),mw: ‘ﬁ}/m r ﬁ%ﬁ‘ ’&’)qu.) | — ex@’(’A MZ)) %)

where ’Ui m is a velgejty, constant during At , for the 1th particle
at time step m, and i,m is calculated from

/U}-",m‘—‘- R/\/';/w (I R) /z/)/m ‘ (9)

ancil, .AI
aslaal 0N s i .
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In (9), R is the one-time-step autocorgglation of /U: and is given by
R=1- At/T for small A t/T, and M7 5 in a randomly sclected velocity
with variance A2 . Equation (9) is a ffrst—order Markov process that
approximates the exponential autocorrelation used to obtain (1).

Using (8) and (9) for many time steps and many tracers, the steady state
solutions for y2 are in excellent agreement with the analytical model.

Other material discussed in FM includes analytical solutions for an
oscillating autocorrelation given by

o) =(eos T i 5B T)eng( AT

and corresponding transient numerical solutions using a second-order Markov
process for i p, namely

N
Wm = C, ‘%/m -+ CD-/%:/M 2 T C‘/’/L//-”"

and where C) and C) are related to by and by in (10).

(10)

The problem of similar numerical calculations when the turbulent intensity
1s spatially yariable was briefly discussed. In particular it was pointed out
that with 472==/tr164} , One cannot assume symmetrical turbulent velocity
distributions as were used with (9). The use of symmetrical velocity distribu-
tions violates the equation of continuity for an incompressible fluids. To
overcome this difficulty a transition probability model of turbulent dispersion
has been invented.
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WAVE/SHEAR-FLOW INTERACTION AND THE GENERATION
OF LANGMUIR CIRCULATIONS

Alan J. Faller

Langmuir circulations are helical rolls in the surface layers of lakes and
oceans with their axes along the wind direction. (Langmuir, 1938). They give
rise to lines of convergence on the ocean surface, and any floating materials
that converge into these lines are called wind rows.

Some characteristics of LCs were briefly reviewed. Their spacing on the
ocean is from 5 m to 200 m. and they have downdwelling speeds on the order of
1/100 the wind speed. As deduced by E. R. Baylor in 1962 from fiecld observa-
tions of LCs (personal communication) small cells tend to agglomerate into
larger cells, an energy exchange from higher to lower wave numbers that {s now
understood to be a ubiquitous characteristic of two-dimensional turbulence.
The largest scale in this energy transfer is usually about 2.5 to 3 times the
depth of the mixed layer.
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Laboratory films of LCs due to the interaction of crossed-wave patterns
and wind-driven shear flow (the Craik-Leibovich (1976) theory) were shown,
both for the wind blowing with and against the wave propagation direction.
The observed circulations were in agreement with specific predictions of the
theory (Faller, 1978) and reversed their sense of circulation in response to
reversal of the wind direction (Faller and Cartwright, 1982).

The second Craik~leibovich theory is an instability theory developed from
the basic equations:

u + u - Vg + V(r + u e gs) = u_x (V x u) + w2y 1
Veuro (2)

where ug is the Stokes drift of the wave field. These equations can be
derived by the usual expansion in wave amplitude, as in Craik and Leibovich
(1976), or by the wave/shear-flow interaction theory of Andrews and McIntyre
(1978) as shown in Leibovich (1980).

The instability mechanism has been tested In a series of laboratory
experiments by the author and Craig Perini at the University of Maryland. A
film was shown illustrating an unstable laboratory flow consisting of small
waves (amp. = 0.3 mm, wavelength 30 cm) and shear flow # = 0(0.25s~1.)
The instability clearly took the form of longitudinal rolls in the surface
layer. Again, these experiments give results that appear to be in agreement
with the Craik-leibovich theory.

REFERENCES

Andrews, D. G. and M. E. McIntyre, 1978. An exact theory of non-linear waves
on a Lagrangian flow. J. Fluid Mech., 89, 609-646.

Craik, A.D.D. and S. Leibovich, 1976. A rational model for Langmuir circula-
tion. Js Fluid Mech. E, 401~-426.

Faller, A. J., 1978. Experiments with controlled Langmuir circulation.
Science, 201, 618-620.

Faller, A. J. and R. W. Cartwright, 1982. Laboratory studies of Langmuir
circulation. Tech. Note BN-985, I1.P.S.T., Univ. of MD, College Park.

Langmuir, I., 1938. Surface water motion induced by wind. Science, 87,
119-123. —

Leibovich, S., 1980. On wave-—current interaction theories of Langmuir cir-
culation. J. Fluid Mech., 99, 715-724.

~d




- 140 -
POTENTIAL VORTICITY STRUCTURE 1N THE NORTH ATLANTIC SUBTROPICAL GYRE

Donald B. Olson

Following a brief discussion of the Ertel potential vorticity for a
stratified fluid on a rotating earth, the distribution and forcing of
potential vorticity in a subtropical gyre is considered. If both diabatic
forcing, L.e., surface buoyancy fluxes, and the wind stress curl are included
the result i{s an asymmetric gyre which is less intense in the south than in
the north. The potential vorticity fileld which arises due to the Sverdrup
balance i{s asymmetric even in the case of a symmetric wind curl without any
diabatic effects. The north-south gradients in potential vorticity are
largest in the northern portion of the gyre. There {s a tendency to form
regions of nearly uniform potential vorticity in the south—central gyre due to
the forced response. The well-known production of opposing meridional
gradients in potential vorticity between the upper and lower layers in the
southern gyre is pointed out. This effect can lead to the breakdown of the
flow to the west in the southern gyre due to baruciinic instability.

The simple ideas derived from the consideration ¢f the Sverdrup problem
are compared with the observed potential vorticity as approximated from the
thickness between isotherms in historical expendable bathythermograph data.
The basic asymmetry in the gyre is noted in both the potential vorticity and
the baroclinic streamfunction as approximated by the thermocline depth. Por-
tions of the gyre, however, appear to have more iu common with a Fofonoff gyre
than a Sverdrup circulation. The predicted reversal of the «eridional poten-
tial vorticity gradient in the southern gyre does appear but rakes the form of
a set of step-like fronts rather than the smooth gradients expected. These
bands of high potential vorticity gradient are associated with eddy potential
energy maxima and reversals in baroclinic shear in the surface layers. Tue
possibility that these bands may be related to the final stable state follow-
ing a large scale instability and turbulent cascade {s speculated upon.

EVOLUTION OF STRONG VORTICES
Glenn Flierl

One of the serious flaws in the standard quasi-geostrophic equations,
commonly used for understanding the evolution of mesoscale oceanic eddies, is
the requirement that the change in thickness between density surfaces must be
small compared to the mean thickness. In the case of warm core rings, the
thickness of the thermostadt layer may range from 500 m at the center to zero
at the edge of the eddy. Yet the prediction of the evolution of such features
is vastly simplified by noting that there is a dominant equilibrium balance of
forces in the fluid with the beta effect and time derivatives being relatively
weak.

I have constructed a non-quasi-geostrophic model for the evolution of a
warm core ring using a two layer model in which the upper layer has finite
volume so that the interface surfaces on a basically circular boundary. The
lowest order flow in the warm pool is much faster than the Rossby wave speeds

A
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BL2 and 1s not geostrophic but rather is assumed to be in a state of
cyclostrophic balance. The time changes then occur on a time scale set by
(B L)-1 and can be calculated by balancing the net Coriolis forces due to
translation of the whole pool with the southward forces caused by the 8
effect and form drags caused by wave generation in the lower layer. 1 have
assumed that the lower layer is deep compared to the typical upper layer
thickness so that the lower layer dynamics is quasi-geostrophic with Rossby
waves being generated by the motion of the warm pool.

For very deep lower layers, the generated waves can be calculated
explicitly and the form drags can be shown to induce a southward motion of the
upper pool and decay of its energy. This wave drag vanishes for very special
choices of the size of the upper pool and the lower layer motions are then
non-zero only just below the upper layer and have a net counter-clockwise
circulation with angular momentum equal and opposite to that of the upper
layer.

FINITE AMPLITUDE LONG WAVES IN A SHEAR FLOW
Melvin Stern

The temporal evolution of the cross-stream velocity v in an inviscid and
plecewise uniform vorticity boundary layer flow is investigated by means of a
large amplitude, long wave, and two dimensional theory. The maximum and
ninimum v increase up to the time where “shocks" form, whereupon the neglected
short wave effects become important. The distribution of the large v (+) has
a universal qualitative character, resembling the distribution in a laminar
spike (Kovasznay et al. 1962).

Three dimensional processes are implicit to the extent that they account
for an anomalous vorticity layer assumed for the initial state of the two
dimensional theory. This predicts other strong nonlinear effects, such as
wave breaking and "mode locking".
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THE SHAPE OF THE MAIN THERMOCLINE
Rick Salmon

Consider a two-layer ocean in which the lighter fluid has been divided up
into M parcels of equal mass. Imagine that the ocean surface 18 covered by a
horizontal network of N square grid-boxes, and let my be the number of
light-water parcels beneath the i~th grid-box. The depth of the main thermo-
cline at the i-th grid-box is proportional to my, which may be zero. A
state of the systen,

{ oy, mz,...,mN} ,

is defined by specifying the number of parcels at each of the N grid-boxes.
Each state (1) has an entropy,

S =1n W,
where
W= M:
ml‘.cooocmN!
is the number of ways to realize the state. Replacing
In(mj!) ~ mijlnmg

and then maximizing S subject to the conservation of total mass,

}:mi-M,

and potential enstrophy,
S * - £
S 4 m = E,

leads to

Inmy ug-b f¢/my |wherenm 0.)
(5) Z \ 1¢

Here a and b are Lagrange multipliers corresponding to (4) and (5). Consis-
tent solutions to (6) exhibit hemispheric regions of uniform potential
vorticity f;/mgy. This argument can be made less heuristic, and can

include the contribution of relative vorticity to (5) and the additional
constraint of energy conservation. Numerical experiments provide some
confirmation.

(1)

(2)

(3)

(4)

(5)

(6)
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TRANSIENT TRACERS
William J. Jenkins

Observation of the penetration of man-made substances, in particular
nucleatr weapons testing fall-out and industrial by-products, are providing us
with a unique opportunity to measure mixing and advection in the oceans. The
different "boundary conditions", time histories and geochemical behavior of
these substances highlight different processes and parts of the ocean and
allow us in a crude way to resolve the pathways and transport processes
responsible for their redistribution in nature. Due to the sparse sampling
inherent in the oft-times difficult measurements, and the uncertainty in some
of the boundary conditions, the conclusions drawn on the basis of tracer
studies may be by themselves ambiguous, but at least place crude "integral
constraints” on the physics operating in the ocean.

There are two extremes in time histories for the tramsient tracers. At
one extreme is the pulse~like injection of bomb produced tracers such as
tritium, 137¢s and 90Sr, while the other extreme is characterized by quasi-
exponentially increasing concentrations, e.g. 85kr, fluorocarbons and COos.
The bomb-produced tracers generally have more northern hemispheric delivery,
whereas the “industrial” tracers are more globally uniform.

Carbon-14 produced by the bomb is intermediate between the two classes of
tracers since it is largely inventoried in the form of atmospheric 14C0j.
Its time history is spread out more in time than tritium yet it is now
decreasing. 14C0; travels the same pathways as anthropogenic €Oz, but
with the important difference that the exchange timescale between the mixed
layer and the atmosphere is of the order of 15 years for lACOg, but only a
tenth of that for COy alone. Evidence from corals Indicates that the pre-
anthropogenic l4c age of surface waters was of the order of 300 years - an
artifact of the relatively short residence time of water at the surface (a few
years) coupled with the larger residence time of the same waters within the
thermocline (a few decades).

"Direct” measurement of anthropogenic CO; is being attempted, but
estimation of the preformed (surface equilibrated) CO; contents requires
large and perhaps uncertain corrections for in situ production by oxidation of
organic materials, and hence is still a somewhat controversial technique.
85kr (half-life 10.5 years) is a by-product of nuclear fuel reprocessing,
has a well documented atmospheric history and bein% a noble gas has a simple
behavior. The difficulty {s that measurement of 35Kr requires 200 1 of
water and speclalized shipboard and shore-based equipment. One of the more
promising tracers is freon-11 (a Dupont trade name for trichlorofluoromethane)
which i{s also well documented in the atmosphere, apparently inert in the
oceans and measurable at sea using small (ca. 100 ml) samples. Preliminary
results show major oceanic features in a believable way.

Finally there is tritium (half-1ife 12.5 y) and its stable, inert daughter
3He. The spike-like entry of tritium into the oceans coupled with the fact
that it exists primarily as water (H3H0) makes it an excellent tracer of
decade timescale transport. The daughter, 3He, has the interesting boundary
condition in that {t 1s “zeroed” at the ocean surface, and builds up signifi-
cant excesses in a few months. This extends the sensitivity of tritium to
shorter timescales and provides a unique sensitivity to "backfluxing” to the
atmosphere.

P
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INVERSE METHODS FOR OCEANOGRAPHY
George Veronis

Determining absolute velocities in the ocean is a long-standing problem
that has been attacked mostly via intuitive assertions about a likely level of
no motion. Wunsch (1978) formulated the problem in terms of inverse theory
which has been used with considerable success in geophysical studies. The
basis of the analysis is to assume a level of no motion and then to correct
that level so that conservation of mass is satisfied for each of the several
conservative layers that can be identified. The resulting system of equations
is a strongly underdetermined one and the procedure proposed by Lanczos using
singular value decomposition can be applied to find the (unique) solution when
contributions from the null space are omitted. This procedure gives a correc-
tion that departs minimally from the assumed level of no motion.

One difficulty with the inverse procedure is that large corrections are
required if the assumed level of no motion involves large initial imbalances
in mass conservation of the layers. These large corrections are often physic-
ally unrealistic. Filadeiro and Veronis (1982) have proposed a means of circum-
venting the latter difficulty by running an empirical search for a best level
of no motion before inverse theory is applied. An important consequence of
that search is that it may suffice to give an acceptable level of no motion
with no correction. Part of the search procedure is to study the effects of
noise to determine how much of an imbalance in mass conservation can be toler-
ated because it is at or below noise level.

An alternative search procedure that makes use of the common solution of
inverse theory leads to results that are close to those obtained with the
empirical search. Once that result is obtained one can derive an optimal solu-
tion by using a three—way trade-off involving the mean—square residual trans-
ports, the magnitude of the correction and the number of eigenvectors for the
correction. A great advantage of. this procedure is that the imbalances that
must be eliminated can be kept small so that for a satisfactory solution the
required correction may be so mild that the usual noise amplification accom-
panying such corrections 1s avoided.

An alternative attack using all of the eigenvectors to obtain a solution
that lies within a prescribed neighborhood of the exact solution to the problem
leads to a more flexible and controllable procedure.

For all of the schemes that were adopted it is possible to use conservative
layers defined by density, potential vorticity and/or the Bernoulli function to
constrain the system. The latter two quantities may require the introduction
of higher-order processes. Methods for incorporating these higher-order
effects are the subject of an on-going study.
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ON THE DIRECTION OF EDDY MOMENTUM FLUXES IN BAROCLINIC INSTABILITIES
Isaac M. Held

In the analysis of the instability of atmospheric zonal flows to quasi-
geostrophic disturbances, one often encounters unstable modes that are essen-
tially baroclinic, deriving most of their energy from the potential energy of
the basic state, but with structures modified somewhat by horizontal shears in
the zonal wind. Among these modifications the tilt of constant phase lines
with latitude is of particular interest, this tilt being identically zero for
normal modes in a purely baroclinic problem. Few general results have been
obtained that predict even the sign of this tilt or, equivalently, the direc-
tion of the horizontal eddy flux of momentum, given the form of the mean flow.

I argue in this seminar that one can gain some understanding of this prob-
lem by examining the very simple special case of an internal jet instability
with very small growth rates, growing on a mean flow with small horizontal
shears. From the fact that the eddy potential vorticity flux in an unstable
mode is everywhere directed down the mean potential vorticity gradient, one
can show that the sign of the vertically integrated momentum flux divergence
is controlled by the vertical derivative of the mean potential vorticity
gradient, divided by the mean vertical shear, and evaluated at the steering
level. If this quantity is positive, the momentum fluxes are upgradient if
the mean flow has sufficiently large meridional scale, and downgradient if
this scale 1s sufficiently small (even though horizontal curvature of the mean
flow may be making a negligible contribution to the potential vorticity grad-
ifent). If this quantity is negative, the flux 1s downgradient irrespective of
the meridional scale of the mean flow.

Numerical results show that. this same qualitative behavior is also found
when growth rates are not small, and for the Eady and 2-layer models. At the
most unstable wavenumber, one generally finds a transition froa downgradient
to upgradient fluxes as the meridional scale of the mean flow increases. The
transition occurs at a scale comparable to the relevant radius of deformation
or, equivalently, the zonal scale of the mode.
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OPENERS AND CLOSURES
Willem V.R. Malkus

The word “closure™ is used to describe a method of solution of the infin-
ite sequence of equations which relate moments of (turbulent) flow to other
moments, each equation of the sequence requiring a knowledge of unknown higher
moments. The usual technique of closure 18 to hypothesize an additional
relation between a higher and lower moment, thus terminating the sequence of
equations. Hence the nature of a closure assumption is to restrict the huge
number of solutions that could be found to a truncated version of the original
moment equations.

In exceptional circumstances a closure can be formally correct. An
example is given which leads from the Welander-Keller convection loop to the
Lorenz equations.

An "opener” is also a method of solution of moment equations of a flow
field. Rather than terminating the sequence of equations by a statistical
hypothesis, one explores the entire class of vector fields (among which are
the possible fluid motions) compatible with the first, or first few, moment
equations. A possible method would be to treat each compatible vector field
on the same footing, constructing an average value for any desired quantity.
However, the procedure that has been adopted is to seek that solution among
the many possibilities which provides a formal upper bound on some important
aspect of the flow. For example, upper bounds for heat flux have been found
in convection and upper bounds for stress have been found for shear flow. 1In
principal these upper bounds can be brought nearer and nearer to the realized
flow by the addition of higher order moments to reduce the class of possible
motions. While upper bound theory has produced the only guaranteed quanti-
tative results in turbulence theory, the bounds to date are not particularly
close to the observations. The extension of present upper bound results by
analytic methods may not be feasible, yet with the greater availability of
computing facilities, bound theory provides a unique way to pin down quanti-
tative aspects of turbulence statistics. First steps towards formal bounds on
the statistical stability of turbulent shear flow are described. Numerical
methods are used to solve ordinary time—dependent, nonlinear equations which

determine stable average fields "ad jacent to reality ".
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CHAOS IS COME AGAIN
Edward A. Splegel

This is an account of work done with Alain Arneodo and Pierre Coullet on
the temporal dynamics of triple convection. We have studied Boussinesq
thermohaline convection in a layer rotating about a vertical axis. We adopted
Rayleigh boundary conditions, that is conditions that make the solutions of the
linear problem trigonometric, and we have assumed bidimensional motion. If you
look into last year's notes, you will undoubtedly conclude with us that, in a
neighborhood of parameter space of the triple point where the three instabili-
ties are simultaneously marginal, the temporal dynamics may be described by an
amplitude equation of the form

K 40X +9x 4 Ax =kgxX 2 +Kkgx?x + k%P +kx'x + k% (1)
where x is the amplitude of the normal mode of linear theory that may go
unstable. To get this system, we have assumed a finite box so as to make the
number of modes that is allowed by linear theory countable. The parameters n ,
v and A are given directly by linear theory. When all three of them vanish,
we are at the triple point where linear theory gives three vanishing growth
rates. The six ky are properties of the generalized null vectors that arise

in the linear theory at the triple point. There is no need to write down their
expression in terms of the various more conventional linear parameters, but we
do have those expressions worked out.

The problem in studying (1), if special circumstances do not lead us to a
preferred region of parameter space, is that this space 1s hexadimensional and
a complete exploration of it is not possible for us. We have decided to con-
centrate on the limit of small dissipation, that is, 0 <n<< 1. 1In that limit,
if we require that no linear terms are lost, we get the asymptotic normal form
for this case, namely '

o0 .o ° _ 3
A+A +0aA +BA= A (2)

where the amplitude function A and the time have been suitably scaled. There
remain two parameters and a sign to be chosen in this version. If you were to
go back to the original Boussinesq equations and perform the standard ampli-
tude equations, with the introduction of a slow time, you would get (2) in
leading order.

Numerical solutions of (2) reveal the full panoply of modern chaotic dynam-
ical phenomena - period doubly, period halving, strange attractors, hysteresis,
intermittent behavior. Among the forms of chaos that we observe is that which
occurs near to unstable homoclinic orbits and is suggested by the work of
Shil'nikov. The behavior is so rich and complicated that even the amplitude
equations are too much to cope with. But just as the Boussinesq equations form
a crude model of some features of gfd, and the amplitude equations model the
temporal behavior of the Boussinesq solutions, there are mappings that model
the temporal behavior in all of the above. We have constructed bidimensional
Poincaré maps that provide qualitative models of this behavior, as in a formal-
ly related study done with Charles Tresser. These in turn can be reduced to
maps in one dimension that leave no doubt that, in triple convection, chaos
occurs as close as you want to the triple point of multiple marginality.
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STATISTICAL MECHANICS OF FIELDS
Joseph B. Keller
1. INTRODUCTION

Statistical mechanics associates a probability density P(p,q,t) with a
mechanical system described by a set of coordinates q and conjugate momenta
p- Conservation of probability requires that the temporal evolution of P be
governed by the equation

2P dH 3P H P

?t .B&‘Eb k3 }{
Here H(p,q) 1s the Hamiltonian of the system. In terms of H, the equations of
motion of the system are

op __¥H 3¢ H
R TR

2. THE GIBBS DISTRIBUTION

)

(2)

A statistically steady state is one for which P(p,q) is independent of the
time t. Of course P must then satisfy (1) with 3P/ ¢t =0. In particular
any function of H(p,q), 1.e. P[H(p,q)], is a solution of (1) which 1is
independent of t. This follows at once by using (2) in (1).

To find the form of P(H), Gibbs considered two noninteracting systems with
Hamiltonians H; and Hy. The Hamiltonian of the combined system is
Hi+Hy. Then because the systems are independent, their probabilities must
be multiplied together to yleld that of the combined system.
Thus

P(Hj+Hp) = P(Hy) P(Hp). (3)
The continuous solution of (3) is the Gibbs distribution
—B H(pkg) -8H(P, ¢)
P(H> = e F /Se- p /?o“} A?. (4)

Here P is a congtant which Gibbs chose as ﬁ-=1]KT, where K 1s Boltz-
mann's constant and T 18 the absolute temperature at which the system 1is
assumed to be in equilibrium.

3. THE RAYLEIGH~JEANS LAW

When the Gibbs distribution (4) 1s applied to a system with a quad-
ratic Hamiltonian, it yields an average energy of KT/2 per degree of
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freedom. A scalar field, such as a sound field, in a container of volume V
has(l/g)(‘ﬂr/g)(.&/npv modes with wavenumbers less than k, for k large.
Each mode 1s a degree of freedom, so the average energy of the field in all
modes with wavenumbers less than k 1s(K'T'/21r3),k3V . Thus the average
energy density E(k) per unit volume per unit wavenumber is V-1 times the
derivative of this with respect to k,

- KT ,8
t(.‘t\ = _‘;_TF (5)

This is the Rayleigh-Jeans law for the energy density of black body radiation,
except for an extra factor of two on the right side to account for the two
states of polarization.

This law leads to an infinite energy density when integrated over k, so it
cannot be correct at high wavenumbers. The correct law, discovered by Planck,
agrees with (5) for small k, but differs from {t at high k due to quantum
mechanical effects.

4. CORRELATION FUNCTIONS OF FIELDS IN THERMAL EQUILIBRIUM.

The Gibbs distribution (4) can also be used to calculate correlation
functions of fields. A convenient way to do this 1is to write
u(x,t) =[p(x,t), q(x,t)]and to introduce the characteristric functional F [ A]
of the field, defined by

F[-A] -_—gexP[iT %)\lx,*)‘/((",t)o"‘dg P[H(u)] AFJ{ (6)

Here the argument ) (x,t) is a vector with the same number of components as
u{x,t) and D is the domain of x. From F[)] the moments of W can be
found by functional differentiation at 'A =0:

Pl :".ASU\(X.}')...M(&Jth)'l)[mu)]0(}Jz 7
BAMEY -+ JAUX, ¢,)
, / ASO

- .A
31Ut i ),
When the field satisfies a linear equation of moftion, the Hamiltonian H is

quadratic. Then F can be evaluated explicitly by completing the square, and
the result can be written in the form.

FI2)= exp(-;'; f 50 § famnc XTI (X ¢)) lJ (X ) de' ! axdt) @
Y

.»D
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This result (8) shows that the field is Gaussian with mean zero. All moments
can be expressed in terms of the two-point two~time moment

(ui(x,t)uj(x' ,t')). Furthermore, explicit expressions can be obtained
for this second moment in terms of certain Green's functions associated with

the field's equation of motion.

The derivation of (8) and of the expression for the second moment, as well
as various consequences of these results, are given in the author's paper
Keller (1970).

5. APPLICATION TO TWO-DIMENSIONAL TURBULENCE

We shall now apply some of the preceding considerations to an
incompressible fluid in two dimensional turbulent motion in a domain D. First
we introduce the stream function\l/(x,y), in terms of which the energy E,
enstrophy )L and palenstrophy § are given by

E={(V\r)"alx)4, ) JL = {(A‘*’)l)x .l7 ) Q:IAW (A:‘\r) Ax 47. 9
D
By analogy with (4), we introduce the distribution.
A _xE-sd2-3% Q
Ple,n§1=2 e . (10)

In (10) & f and 5 are constants, and Z is the normalization
coefficient. The distribution (10) without the term in was considered by

Salmon (1982).

To use (1) we follow Salmon and introduce as a basis the normalized
eigenfunctions P. » defined by
£

a
(A+A)@.=0 in D, @.=0 ow OD § q dxdy=1, (1)
y )
Then we write ‘V in terms of the CP , with coefficients kzlj_ , as follows:
{ <

~1
Vixy) = ZZ'*: T ), (12)
4
By using (12) in (9) we get
4 2

E=2x, N=2 4y B2 4y

. (13)

Now (10) becomes 2 y
4 _Z(xabk r3R)g
P(}’() =2 e ¢ (14)
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From (14) we find that
i t q\-1
<'y:> = I(d+skc +X“, ) . (15)

£ 3
There are asymptotically (ﬂ/‘f)(&/ﬂ A modes with wavenumbers less than k
in a domain of area A, when k is large. Thus the average energy density E (k)
of the fluid per unit area per unit wavenumber is

A <3/ >dk q(&)ﬁ h<y>/am, (16)

By using (15) for y2Z ip (16) we get

q
E(&) = (0( +‘€,£ + 34k ) (17)
For large k, this becomes the well-known result

E(k)'\- .’E’— . (18)

In three dimensions the same analysis yields E(k) ~ k2.
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THE MODIFIED CUMULANT EXPANSION FOR DIVERGENT
TWO-DIMENSIONAL ISOTROPIC TURBULENCE

Shinichiro Yanase

We Iinvestigate divergent two-dimensional isotropic turbulence of finite
Rossby's outer radius of deformation using the modified cumulant expansion.
Such flow can be considered as a model of geostrophic turbulence in atmosphere
or ocean. B -effect is neglected in order to avoid complexity.

The fluid motion of quasi-geostrophic balance in a uniformly rotating
frame 1s written as

DSl AR + 2 AY _ _paty
QC {( +K )\f)} m - s (l)

where %’ is the stream function, ‘4 the vorticity, V the kinematic
viscosity, X the inverse of Rossby's radius of deformation. It can easily be
shown that eq. (1) contains two fundamental conserved quantities for V = O.

df¢ . _av4, £8¢ . -20P (2)
At dx g

where

o ' a
Cd = £‘ + Kk°C total energy
(3

QL\, = Q+HAE potential enstrophy,

and éi the kinetic energy. ’;1 the enstrophy, C the potential energy, P the
palinstrophy.

Using the lowest-order apprbximation of the modified cumulant expansion,
we obtain from eq. (1) the equation for &Ch,t) , the energy spectrum
fraction. Numerical integration of the spectrum equation gives the following
results:

1) The kinematic energy decays and simultaneously the potential energy
increases in times.

2) The motion larger than the radius of deformation is strongly suppresed
but the energy spectrum in the corresponding region does not remain constant
but changes slowly in time as,

E(h e)oct 5F (k%)
and Elhe)dly g 4 =0

3) In the large wave number region, the similarity law of energy spectrum
1s identical with nondivergent case and the k=3 subrange appears. However,
enstrophy cascade is enhanced by the decay of kinetic energy in low-wavenumber
rvegion, and the palinstrophy is amplified compared with nondivergent two-
dimensional turbulence ( K= O ).
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THERMAL CONVECTION: NUMERICAL EXPERIMENTS NEAR THE ONSET TO
TURBULENCE AND COMMENTS ON THE APPLICATION OF CLOSURE

Jackson R. Herring

We have investigated Boussinesq-slip boundary thermal convection, focusing
on the nature of the transition from steady convection at low Rayleigh number
(Ra <, 30 Rc) to a chaotic regime at Ra> 65 Rc, where Rc = 27 J7%4. For
most of the calculations reported here, the Prandtl number = 10. The numerical
technique is pseudospectral (= Fourier colocation) with an equivalent grid
point resolution <= 32x32x32. Our goals are twofold: (1) to examine the tran-—
sitional behavior of a dynamical system as the number of modes is increased
sufficiently so that the resulting equations are an accurate representation of
the underlying physics, and (2) to produce a data base by which to assess
closure techniques (DIA, etc.) at turbulent Rayleigh and Reynolds number.

Broadly speaking, what we observe is that the transition from a periodic
regime (at Ra & 40 Rc) through a quasiperiodic regime (50 Rc € Ra £ ¢o Ro)
and into a chaotic regime (Ra 2 7° Rc) is accompanied by a rapid increase
in those turbulence parameters (such as skewness, S = < (guw/c x )7k ("7“/01)‘:) 72,
isotropization and vertical vorticity) that measure three dimensionality.
Moreover, equivalent calculations in two dimensions fail to become turbulent
(or chaotic) if the numerics adequately resolve all significant scales of
motion. The computed values of the velocity and temperature skewness are
shown to be in rough agreement with experiments, such as that of Tavoularis,
et al (1978). The value of the Taylor microscale Reynolds number ranged from
2, at Py = 10 to ~- 30 at Pr =1.

An examination of the contour plots of the flow provides an identification
of the various frequency components present in the power spectra of the velo-
city and temperature fields. At low Ra, the periodic regime consists in a
single frequency component at the Brunt-Vaisala frequency of the stable core
region. At this stage, the flow consists of near two dimensional convection
with (three dimensional) imbedded lenticular plumes. As Ra increases, the
roll boundaries begin to wave at a somewhat lower frequency, and the system
enters a quasiperiodic regime at WRa =55Rc. As Ra lncreases, further and
more complicated time dependence is introduced. This appears associated with
a tilting-wagging motion of the thermal plumes, followed by a pinching off of
blobs of fluid from the plume outflow anvils. In general, the temperature
field appears much more turbulent than the velocity, consistent with the rather
large value of the Prandtl number Pr (= 10). At lower Pr (£1) the flow appears
much more three dimensional, and at Ra = 70Rc roll boundaries can no longer be
identified.

Finally, we consider certain aspects of two—point closures (notably the
DIA), inquiring as to what detailed features of the theory need to be preserved
unabridged in a comparison of theory and convection experiments (numerical or
otherwise). In this connection we present a comparison of closure with the
numerical simulation of passive scalar turbulence. We note that the long
correlation times at small scales (as suggested by the near laminar nature of
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small scales at small Reynolds numbers) is accurately preserved by the DIA,
but not by the more abridged Markovian theories such as the eddy damped
Markovian or test field model. The research reported here is in collabora-
tion with J.H. Curry, J. Loncharie, and S.A. Orszag.
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HETERQCLINIC ORBITS AND IRREGULAR OSCILLATIONS

Louls N. Howard

To try to clarify some qualitative aspects of experiments on turbulent con-
vection, R. Krishnamurti and I have studied a 6th order spectral truncation of
the equations of 2D convection. This extends the Lorenz model (IM), containing
it on an invariant 3D manifold. But it allows also a loss of symmetry corres- H
ponding to asymmetric tilted cells which is impossible in LM, and appears not !
to have been considered in previous extensions of {t. At low Rayleigh number
(R) the attractors of the 6D model are those of IM, but below the subcritical
Hopf bifurcation in LM associated with the chaotic attractor the 'steady cell’

Llorenz c.p.'s (critical points) become unstable by a supercritical steady
bifurcation out of the Lorenz manifold -- 4 new stable c.p.'s appear. At
still higher R these undergo supercritical Hopf bifurcations leading to limit
cycles. From here up to over 15 Rc, we have numerically found limit cycle
attractors in much of the range, but also a number of chaotic gaps. Approach
to these gaps is often, but not always, through a sequence of period doublings.
But the chaotic regions seem also to be associated with the occurrence, at
special values of R, of heteroclinic orbits joining the unstable Lorenz c.p.'s
(which have some stable complex eigenvalues to the 'conduction' saddle point,
or to one another; alsc sometimes homoclinic orbits. These heteroclinic
orbits are accompanied hy others joining the c.p.'s in the opposite order, so
these "heteroclinic pairs” are somewhat like homoclinic orbits. When a
certain eigenvalue condition is satisfied, Silnikov's theorem on the existence
of a horsehsoe map at a homoclinic orbit can be extended to the doubly
heteroclinic case (at least in 3D). This indicates the existence of a chaotic
set but not necessarily a chaotic attractor, and our double heteroclinics do
sometimes occur at values of R where there are limit cycles. However, these
are near the chaotic gaps, and finding these double heteroclinic orbits seems
to be a valuable tool in seeking chaotic attractors.
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THE RESPONSE OF A TWO-LEVEL OCEAN TO THERMAL FORCING
Michael K. Davey

The N. E. Atlantic is relatively warm (compared to a zonal average), and
this warm water has a moderating influence on the climate of W. Europe.
Several processes (such as N. Atlantic currents, deep convection in Norwegian/
Greenland Sea, eastern boundary currents) probably combine to maintain this
state. Various numerical and analytic methods are being used by the ocean
modelling group at Cambridge University to investigate several mechanisms ~-
one 1s described in this seminar.

The surface heat flow Q depends on the difference between the effective
atmospheric temperature Tj and ocean surface temperature Tg, i.e., Q = Qg(Ts - TA)
(Haney, 1971); Q, = 30 Wm~ 2 oc‘l). This thermal input is spread over some depth,
HyM. For this two-level model only cooling (TA<TS) is considered, so upper level
temperature T; is the same as Tg, and heat is spread over upper layer depth Hj.
This gives a thermal forcing term Fy = (TA-TI)/R, where 1 = Hm/*‘cw/Qg is an
equilibration time (< = reference density, ¢y = specific heat of water). For
long time scales a similar benthic forcing term F = (Tg - T,)/t is also included
to simulate high latitude processes maintaining the basic stratification. T and
Ty are prescribed, as functions of latitude only.

With no surface wind stress or bottom friction, the flow is purely
baroclinic. In the absence of boundaries the meridional temperature gradient
(decreasing poleward) establishes a geostrophic zonal flow, on time scale T,
eastward at the upper level, westward below.

When eastern and western boundaries are added, the meridional pressure
gradient cannot be geostrophically balanced at the coasts, and Kelvin waves
are generated. These rapidly (== 200 km/day) pass information along the
coasts, creating warm NE and cool SW regions (N. hemisphere), with northward
surface currents, near the boundaries.

These anomalies are then spread slowly offshore by Rossby waves, more
effectively from the east, at speed ¢ < 1 km/day. Because the thermal driving
depends on the ocean temperature, the eastern Rossby waves decay offshore on
scale c-r . In this way a broad warm NE region is generated, almost steady
after time -7y (there is further slow development by slow, lower-level effects),
with an assoclated weaker northward (upper level) current.

The model is simple enough to be solved analytically in many cases. For
the eastern region spin-up by long Rossby waves, analytic solutions can be
found with nonlinear advection terms retained in the thermal balance. Steady
nonlinear solutions can also be conveniently obtained by solving the problem
latitude~by-latitude.

Kelvin waves in this model are very effective at flattening longshore
pressure gradients, and perhaps have an unduly strong influence. Further
investigation of this is underway. Addition of wind-stress is planned, though
numerical methods will probably be needed to obtain solutiomns.

REFERENCE

Haney, R. L. 1971. Surface thermal boundary conditions for ocean circulation
models. J. Phys. Ocean., 1, 241-248.

———iEiiiEI======l==llllll-'-“"I

Y




- 156 -

ON THE 2D TRANSPORT OF STRATOSPHERIC TRACERS
K. K. Tung

A zonally averaged model of stratospheric tracer transport is formulated in
isentropic coordinates. There are some conceptual and computational advant-
ages, as well as some disadvantages, in adopting the potential temperature,
instead of pressure, as the vertical coordinate. The main disadvantage is the
fact that the "density” (mass per unit coordinate volume) in isentropic coor-
dinates is no longer a constant as 1n the pressure coordinate system under the
hydrostatic approximation. However, it can be shown that this density effect
is approximately negligible in the calculation of the mean diabatic circulation
and the eddy advective transports. What is gained by adopting the new formula-
tion is a conceptually simpler picture of the interplay of diabatic and adiaba-
tic processes in the transport of tracers. Mean diabatic heating (cooling)
forces a direct rising (descending) mean mass flow. Along the streamlines of
this mean mass circulation tracers are advected in the mean. These surfaces
slope downward and poleward in the lower stratosphere. In addition to advec-
tion, tracers are also dispersed from their mean path by transient adiabatic
processes in a direction parallel to the local isentropic surface. As a
result, the tines of mean constant tracer mass mixing ratio slope less steeply
than the mean streamlines but more steeply than the isentropic surfaces. The
effect of eddy transport on chemically reacting minor constituent gases is
also discussed.

THE ROLE OF DAMPED EQUATORIAL WAVES IN THE OCEANIC RESPONSE TO WINDS

Toshio Yamagata

We study the roles of damped equatorial waves in the steady oceanic re-
sponse to winds by use of both analytical and numerical methods. In particu-
lar, the sensitivity of equatorial currents to mixing processes is discussed
by using the model which allows the mixing of heat and/or momentum. In the
inviscid model the flows set up by winds of zero curl are eliminated by the
long Rossby waves emanating from the eastern wall and the Kelvin wave (if
excited) emanating from the western wall. The inclusion of mixing processes
may lead to the entirely different steady state associated with non-Sverdru-
pian flows. It is shown that the mixing of heat is essential to maintain
these flows. This is because the mixing of heat affects the attenuation of
divergent waves far more than does the mixing of momentum. Results from the
present study suggest that the mixing processes (especially, of heat)
significantly affect the ad justment processes in the equatorial ocean.
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CALCULATING THE REFERENCE LEVEL FROM THE BERNOULLI FUNCTION CONSERVATION
Pierre Welander

Assuming ideal, steady and strict-geostrophic flow in the oceans the poten-
tial vorticity = J% can he estimated from density data along a
closed hydrographic section. Since _j is conserved along streamlines lying
in isopycnal surfaces, an analysis of P(s) along an isopycnal boundary line (s
measuring horizontal distance along the section) can serve to determine con-
necting boundary points for the stregmline field fn such a surface. The
connecting points must have the same}’~values, but the analysis may not always
lead to a unique connection (some ambiguities may be removed when the density
is varied, under a smoothness condition).

The Bernoulli function B = p + 8Pz (no square velocity term in the geo-
strophic approximation) is also conserved along streamlines, and the connect-
ing streamline points should therefore also have the same B-values. Plotting
B(s) against P(s), we get a line which is covered twice as we let s vary from
zero to s, (go once around the section); the same point P,B is met both at
the entrance and the exit point of a streamline. We do not know B, but can
estimate a baroclinic part of B, say B* = -.9‘,;’."}41 +98% , where z=0 is a
level surface. The complete function {s B = B* + rb(s), where fo(s) is the
pressure along the perimeter at 2z=0, the same function at allisopycnals. If
we plot B*(s) against P(s), the entrance and exit points of a streamline
generally falls at different points P,B“’and P,B‘ in the P-B‘—plane:the line in
theP—B-plane has "opened” and is now a curve which encloses a certain area.
The function B and therefore F(s) can be reconstructed from the curve B*{ )
by collapsing this back to a line which encloses no area. This can be done in
many ways for a single curve. However, if we consider many isopycnals this is
not the case, since B* must always be adjusted by use of the same function

ﬁfs). Actually, the problem generally is an overdetermined one.

As an example, an exact analytical solution of the error integral type
(Welander, 1971) was used to generate the density field and associated fields
of]? and B* along a hypothetical rectangular section between 10°N and 200N,
109E and 10°W, as shown in Figs. la and 1b (the section goes counterclock-
wise from the NE corner, s runs from zero to 40. The normal velocity is zero
at the top (z=0) and the bottom, which has a maximum depth of 800 m. The
corresponding curves B*(P)are drawn for a number of isopycnals in Fig. 2 (full-
drawn curves). The lines s = constant are also shown (dashed curves).,

The surface B*(an) generated in théjz-y-B*- space must now be collapsed
by translating every s-isoline without deformation along the B*-axis, until the
volume enclosed by the surface is zero. This can only be done in one way in
the present case (a uniform translation of all the isolines can always be
added, corresponding to a certain constant pressure change at all points).

’ 2
It is convenient to minimize the moment M: S\S(&-B) d?dy ;7 Wwhen this
is zero the volume is also zero. If resl data are used the zero value cannot
generally be reached, but we get the best approximation in a least-square
sense. We use discrete values By, at density values $. and station coord-
inates s,

d
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Writing By j = B*; 4+ py, the moment is expressed as a quadratic
form for the unknown p j-values; the extremum problem is obviously reduced to
solving a system of linear equations for the Pj's. Using only eight stations
and three isopycnals the following values for the Pj's (in cm of water) were
calculated (p1 was set = 0, for convenience):

§=2 3 4 5 6 7 8
0.728 -1.4670  -1.034  =0.612  0.119  0.848  0.425
(-0.730)  (-1.459) (-1.033) (-0.617) (0.120) (0.848) (0.427)

The exact analytical values are given in the second line. The agreement is
thus very good, the example given is, however, a particularly favorable one
since the s-isolines are plane curves and the collapsed surface a plane.

Relations of this method to so-called “"inverse methods"”, which deal with
the same problem using mass conservation and a different extremum condition,
or the " é)-spiral methods” which assume mass and vorticity conservation in a
local region, remain to be explored.
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Fig.l. 1Isopycnals(dashed), isolines for potential vorticity (full drawn, case a),
and isolines for the baroclinic Bernoulli function (full drawn, case b),
for the analytical example described in the text.

Fig.2. The surface obtained by plotting the baroclinic Bernoulli function against
the potential vorticity and density, for the analytical example described
in the text.The isolines for s are dashed.
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A WAVE IN ANTI-CYCLONIC SHEAR
Roger Hughes

A new type of first baroclinic mode wave which propagates on an anti-
cyclonic vorticity field is identified. It is of the vorticity class of waves
which contains Rossby waves amongst others. This anti~cyclonic shear wave is
produced by pressure variations distorting the vertical stratification in such
a manner that the associated vortex stretching generates the velocity variation
required for Bernoulli compatability with the initial pressure variation. The
wave travels at a speed characteristic of particles within the undisturbed
shear flow and is a low frequency and low wavenumber wave.

A PARAMETERIZATION OF VERTICAL DIFFUSION

Roger Hughes

It is supposed that the vertical diffusion within the main thermocline of
the ocean is governed by a concentration derivative of unspecified order.
Agreement between macro and micro structure determinations of the eddy diffus-
ivity 1s obtained by an appropriate choice of the order of the derivative. The
derivative is found to be fractional and determined according to Liouville.

The Green's function for diffusion in an unbounded ocean is determined and used
to predict diffusive fronts and plateau development in approximate agreement
with observations. The parameterization is used in a model of the annual ther-
mal cycle within the main thermocline. This is used to explain the observed
large depth of penetration of the cycle. Work on the above was done with Dr.
David Anderson (Oxford).

PROPERTY TRANSPORT AND LAGRANGIAN PARTICLE STATISTICS
Russ Davis

Statistical descriptions of the evolution of the concentration, €&, of a
scalar property can be derived from statistics of the motion of Lagrangian
particles. The ensemble mean concentration from prescribed initial and source
conditions is determined bv single-particle statistics, such as the Lagrangian
mean velocity'\/ (t,rp) = ;(g(t,zo) and displacement variance <t£1 (t:,zo)-r0 ‘2> .
Here r is particle position and r, is position at time t = o. Dispersion of
the mean field is the sum of the dispersion of the centroids of the various
fields averaged plus a dispersion of each field about its own centroid
(relative dispersion). The statistics of relative dispersion are determined
by multi-particle statistics. The mean square dimension‘Jdg_<J§-5c12€;> ,
where X. is the centroid, is determined by the mean square separation

£(t:50) |2y = | £t ,ro¥so)-r(t,ro) | 2y .

Methods for predicting from low order Eulerian statistics the mean and
mean square particle velocity, single particle dispersion, and particle-pair
dispersion are discussed and compared with simulations of particles in joint-
normally distributed velocity fields. Mean and mean square particle velocity
depend on correlation of particle density and the flow in compressible flow or
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when particles are deployed on surfaces in which the flow 1s divergent. These
statistics can be estimated using a statistically optimized approximate solu-
tion of Wy +yU.¥) [n 2= - V.4. When particle velocity statistics are
stationary, single particle dispersion depends on the frequency spectrum of
particle velocity at zero frequency. This Lagrangian velocity spectrum is
predicted by a combination of Corrsin's conjecture (1960) and the assumption
of joint-normally distributed particle displacement. Particle migration and
dispersion in velocity fields with spatially varying statistics is discussed.
Mean-square particle separation can be predicted by an elaboration of the
single—particle method. In general the two-particle diffusivity is not a
function of the separation or mean square separation alone.
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